encoder.py 8.91 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Hongkun Yu's avatar
Hongkun Yu committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Frederick Liu's avatar
Frederick Liu committed
14

Hongkun Yu's avatar
Hongkun Yu committed
15
16
17
18
19
20
21
22
23
"""Transformer-based text encoder network."""
# pylint: disable=g-classes-have-attributes

import tensorflow as tf

from official.modeling import activations
from official.nlp import keras_nlp
from official.nlp.modeling import layers
from official.nlp.projects.bigbird import attention
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
24
25
26
27
28
29
30
from official.nlp.projects.bigbird import recompute_grad
from official.nlp.projects.bigbird import recomputing_dropout


class RecomputeTransformerLayer(layers.TransformerScaffold):
  """Transformer layer that recomputes the forward pass during backpropagation."""

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
31
  def call(self, inputs, training=None):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
32
33
34
35
36
37
38
39
40
41
    emb, mask = inputs
    def f(*args):
      # recompute_grad can only handle tensor inputs. so we enumerate the
      # nested input [emb, mask] as follows:
      # args[0]: emb
      # args[1]: mask[0] = band_mask
      # args[2]: mask[1] = encoder_from_mask
      # args[3]: mask[2] = encoder_to_mask
      # args[4]: mask[3] = blocked_encoder_mask
      x = super(RecomputeTransformerLayer,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
42
43
                self).call([args[0], [args[1], args[2], args[3], args[4]]],
                           training=training)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
44
45
46
47
48
      return x

    f = recompute_grad.recompute_grad(f)

    return f(emb, *mask)
Hongkun Yu's avatar
Hongkun Yu committed
49
50
51
52
53
54
55
56
57


@tf.keras.utils.register_keras_serializable(package='Text')
class BigBirdEncoder(tf.keras.Model):
  """Transformer-based encoder network with BigBird attentions.

  *Note* that the network is constructed by
  [Keras Functional API](https://keras.io/guides/functional_api/).

58
  Args:
Hongkun Yu's avatar
Hongkun Yu committed
59
60
61
62
63
    vocab_size: The size of the token vocabulary.
    hidden_size: The size of the transformer hidden layers.
    num_layers: The number of transformer layers.
    num_attention_heads: The number of attention heads for each transformer. The
      hidden size must be divisible by the number of attention heads.
64
65
66
67
    max_position_embeddings: The maximum length of position embeddings that this
      encoder can consume. If None, max_position_embeddings uses the value from
      sequence length. This determines the variable shape for positional
      embeddings.
Hongkun Yu's avatar
Hongkun Yu committed
68
69
70
71
72
73
74
75
76
77
78
79
    type_vocab_size: The number of types that the 'type_ids' input can take.
    intermediate_size: The intermediate size for the transformer layers.
    activation: The activation to use for the transformer layers.
    dropout_rate: The dropout rate to use for the transformer layers.
    attention_dropout_rate: The dropout rate to use for the attention layers
      within the transformer layers.
    initializer: The initialzer to use for all weights in this encoder.
    embedding_width: The width of the word embeddings. If the embedding width is
      not equal to hidden size, embedding parameters will be factorized into two
      matrices in the shape of ['vocab_size', 'embedding_width'] and
      ['embedding_width', 'hidden_size'] ('embedding_width' is usually much
      smaller than 'hidden_size').
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
80
81
    use_gradient_checkpointing: Use gradient checkpointing to trade-off compute
      for memory.
Hongkun Yu's avatar
Hongkun Yu committed
82
83
84
85
86
87
88
  """

  def __init__(self,
               vocab_size,
               hidden_size=768,
               num_layers=12,
               num_attention_heads=12,
89
               max_position_embeddings=attention.MAX_SEQ_LEN,
Hongkun Yu's avatar
Hongkun Yu committed
90
91
92
93
94
95
96
97
98
               type_vocab_size=16,
               intermediate_size=3072,
               block_size=64,
               num_rand_blocks=3,
               activation=activations.gelu,
               dropout_rate=0.1,
               attention_dropout_rate=0.1,
               initializer=tf.keras.initializers.TruncatedNormal(stddev=0.02),
               embedding_width=None,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
99
               use_gradient_checkpointing=False,
Hongkun Yu's avatar
Hongkun Yu committed
100
101
102
103
               **kwargs):
    activation = tf.keras.activations.get(activation)
    initializer = tf.keras.initializers.get(initializer)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
104
105
106
107
108
109
    if use_gradient_checkpointing:
      tf.keras.layers.Dropout = recomputing_dropout.RecomputingDropout
      layer_cls = RecomputeTransformerLayer
    else:
      layer_cls = layers.TransformerScaffold

Hongkun Yu's avatar
Hongkun Yu committed
110
111
112
113
114
115
    self._self_setattr_tracking = False
    self._config_dict = {
        'vocab_size': vocab_size,
        'hidden_size': hidden_size,
        'num_layers': num_layers,
        'num_attention_heads': num_attention_heads,
116
        'max_position_embeddings': max_position_embeddings,
Hongkun Yu's avatar
Hongkun Yu committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
        'type_vocab_size': type_vocab_size,
        'intermediate_size': intermediate_size,
        'block_size': block_size,
        'num_rand_blocks': num_rand_blocks,
        'activation': tf.keras.activations.serialize(activation),
        'dropout_rate': dropout_rate,
        'attention_dropout_rate': attention_dropout_rate,
        'initializer': tf.keras.initializers.serialize(initializer),
        'embedding_width': embedding_width,
    }

    word_ids = tf.keras.layers.Input(
        shape=(None,), dtype=tf.int32, name='input_word_ids')
    mask = tf.keras.layers.Input(
        shape=(None,), dtype=tf.int32, name='input_mask')
    type_ids = tf.keras.layers.Input(
        shape=(None,), dtype=tf.int32, name='input_type_ids')

    if embedding_width is None:
      embedding_width = hidden_size
    self._embedding_layer = keras_nlp.layers.OnDeviceEmbedding(
        vocab_size=vocab_size,
        embedding_width=embedding_width,
        initializer=initializer,
        name='word_embeddings')
    word_embeddings = self._embedding_layer(word_ids)

    # Always uses dynamic slicing for simplicity.
    self._position_embedding_layer = keras_nlp.layers.PositionEmbedding(
        initializer=initializer,
147
        max_length=max_position_embeddings,
Hongkun Yu's avatar
Hongkun Yu committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
        name='position_embedding')
    position_embeddings = self._position_embedding_layer(word_embeddings)
    self._type_embedding_layer = keras_nlp.layers.OnDeviceEmbedding(
        vocab_size=type_vocab_size,
        embedding_width=embedding_width,
        initializer=initializer,
        use_one_hot=True,
        name='type_embeddings')
    type_embeddings = self._type_embedding_layer(type_ids)

    embeddings = tf.keras.layers.Add()(
        [word_embeddings, position_embeddings, type_embeddings])

    self._embedding_norm_layer = tf.keras.layers.LayerNormalization(
        name='embeddings/layer_norm', axis=-1, epsilon=1e-12, dtype=tf.float32)

    embeddings = self._embedding_norm_layer(embeddings)
    embeddings = tf.keras.layers.Dropout(rate=dropout_rate)(embeddings)

    # We project the 'embedding' output to 'hidden_size' if it is not already
    # 'hidden_size'.
    if embedding_width != hidden_size:
      self._embedding_projection = tf.keras.layers.experimental.EinsumDense(
          '...x,xy->...y',
          output_shape=hidden_size,
          bias_axes='y',
          kernel_initializer=initializer,
          name='embedding_projection')
      embeddings = self._embedding_projection(embeddings)

    self._transformer_layers = []
    data = embeddings
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
180
181
    masks = attention.BigBirdMasks(block_size=block_size)(
        tf.cast(mask, embeddings.dtype))
Hongkun Yu's avatar
Hongkun Yu committed
182
183
184
    encoder_outputs = []
    attn_head_dim = hidden_size // num_attention_heads
    for i in range(num_layers):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
185
      layer = layer_cls(
Hongkun Yu's avatar
Hongkun Yu committed
186
187
188
189
190
191
192
193
194
195
196
          num_attention_heads,
          intermediate_size,
          activation,
          attention_cls=attention.BigBirdAttention,
          attention_cfg=dict(
              num_heads=num_attention_heads,
              key_dim=attn_head_dim,
              kernel_initializer=initializer,
              from_block_size=block_size,
              to_block_size=block_size,
              num_rand_blocks=num_rand_blocks,
197
              max_rand_mask_length=max_position_embeddings,
Hongkun Yu's avatar
Hongkun Yu committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
              seed=i),
          dropout_rate=dropout_rate,
          attention_dropout_rate=dropout_rate,
          kernel_initializer=initializer)
      self._transformer_layers.append(layer)
      data = layer([data, masks])
      encoder_outputs.append(data)

    outputs = dict(
        sequence_output=encoder_outputs[-1], encoder_outputs=encoder_outputs)
    super().__init__(
        inputs=[word_ids, mask, type_ids], outputs=outputs, **kwargs)

  def get_embedding_table(self):
    return self._embedding_layer.embeddings

  def get_embedding_layer(self):
    return self._embedding_layer

  def get_config(self):
    return self._config_dict

  @property
  def transformer_layers(self):
    """List of Transformer layers in the encoder."""
    return self._transformer_layers

  @property
  def pooler_layer(self):
    """The pooler dense layer after the transformer layers."""
    return self._pooler_layer

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)