video_input.py 13.5 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14
15

# Lint as: python3
Abdullah Rashwan's avatar
Abdullah Rashwan committed
16
17
"""Parser for video and label datasets."""

Yeqing Li's avatar
Yeqing Li committed
18
from typing import Dict, Optional, Tuple, Union
Abdullah Rashwan's avatar
Abdullah Rashwan committed
19
20
21
22
23
24
25
26
27
28
29
30
31

from absl import logging
import tensorflow as tf

from official.vision.beta.configs import video_classification as exp_cfg
from official.vision.beta.dataloaders import decoder
from official.vision.beta.dataloaders import parser
from official.vision.beta.ops import preprocess_ops_3d

IMAGE_KEY = 'image/encoded'
LABEL_KEY = 'clip/label/index'


32
33
34
35
def process_image(image: tf.Tensor,
                  is_training: bool = True,
                  num_frames: int = 32,
                  stride: int = 1,
36
                  random_stride_range: int = 0,
37
38
39
40
41
42
43
44
45
46
                  num_test_clips: int = 1,
                  min_resize: int = 256,
                  crop_size: int = 224,
                  num_crops: int = 1,
                  zero_centering_image: bool = False,
                  min_aspect_ratio: float = 0.5,
                  max_aspect_ratio: float = 2,
                  min_area_ratio: float = 0.49,
                  max_area_ratio: float = 1.0,
                  seed: Optional[int] = None) -> tf.Tensor:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
47
48
49
50
51
52
53
54
55
  """Processes a serialized image tensor.

  Args:
    image: Input Tensor of shape [timesteps] and type tf.string of serialized
      frames.
    is_training: Whether or not in training mode. If True, random sample, crop
      and left right flip is used.
    num_frames: Number of frames per subclip.
    stride: Temporal stride to sample frames.
56
57
58
59
60
    random_stride_range: An int indicating the min and max bounds to uniformly
      sample different strides from the video. E.g., a value of 1 with stride=2
      will uniformly sample a stride in {1, 2, 3} for each video in a batch.
      Only used enabled training for the purposes of frame-rate augmentation.
      Defaults to 0, which disables random sampling.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
61
62
63
64
65
66
67
    num_test_clips: Number of test clips (1 by default). If more than 1, this
      will sample multiple linearly spaced clips within each video at test time.
      If 1, then a single clip in the middle of the video is sampled. The clips
      are aggreagated in the batch dimension.
    min_resize: Frames are resized so that min(height, width) is min_resize.
    crop_size: Final size of the frame after cropping the resized frames. Both
      height and width are the same.
Yin Cui's avatar
Yin Cui committed
68
    num_crops: Number of crops to perform on the resized frames.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
69
70
    zero_centering_image: If True, frames are normalized to values in [-1, 1].
      If False, values in [0, 1].
Yeqing Li's avatar
Yeqing Li committed
71
72
73
74
    min_aspect_ratio: The minimum aspect range for cropping.
    max_aspect_ratio: The maximum aspect range for cropping.
    min_area_ratio: The minimum area range for cropping.
    max_area_ratio: The maximum area range for cropping.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
75
76
77
78
79
80
81
82
83
84
85
86
    seed: A deterministic seed to use when sampling.

  Returns:
    Processed frames. Tensor of shape
      [num_frames * num_test_clips, crop_size, crop_size, 3].
  """
  # Validate parameters.
  if is_training and num_test_clips != 1:
    logging.warning(
        '`num_test_clips` %d is ignored since `is_training` is `True`.',
        num_test_clips)

87
88
89
90
  if random_stride_range < 0:
    raise ValueError('Random stride range should be >= 0, got {}'.format(
        random_stride_range))

Abdullah Rashwan's avatar
Abdullah Rashwan committed
91
92
  # Temporal sampler.
  if is_training:
93
94
95
96
97
98
99
100
    if random_stride_range > 0:
      # Uniformly sample different frame-rates
      stride = tf.random.uniform(
          [],
          tf.maximum(stride - random_stride_range, 1),
          stride + random_stride_range,
          dtype=tf.int32)

Abdullah Rashwan's avatar
Abdullah Rashwan committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    # Sample random clip.
    image = preprocess_ops_3d.sample_sequence(image, num_frames, True, stride,
                                              seed)
  elif num_test_clips > 1:
    # Sample linspace clips.
    image = preprocess_ops_3d.sample_linspace_sequence(image, num_test_clips,
                                                       num_frames, stride)
  else:
    # Sample middle clip.
    image = preprocess_ops_3d.sample_sequence(image, num_frames, False, stride)

  # Decode JPEG string to tf.uint8.
  image = preprocess_ops_3d.decode_jpeg(image, 3)

  if is_training:
Yin Cui's avatar
Yin Cui committed
116
117
    # Standard image data augmentation: random resized crop and random flip.
    image = preprocess_ops_3d.random_crop_resize(
Yeqing Li's avatar
Yeqing Li committed
118
119
120
        image, crop_size, crop_size, num_frames, 3,
        (min_aspect_ratio, max_aspect_ratio),
        (min_area_ratio, max_area_ratio))
Abdullah Rashwan's avatar
Abdullah Rashwan committed
121
122
    image = preprocess_ops_3d.random_flip_left_right(image, seed)
  else:
Yin Cui's avatar
Yin Cui committed
123
124
    # Resize images (resize happens only if necessary to save compute).
    image = preprocess_ops_3d.resize_smallest(image, min_resize)
Yin Cui's avatar
Yin Cui committed
125
126
127
    # Crop of the frames.
    image = preprocess_ops_3d.crop_image(image, crop_size, crop_size, False,
                                         num_crops)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
128
129
130
131
132

  # Cast the frames in float32, normalizing according to zero_centering_image.
  return preprocess_ops_3d.normalize_image(image, zero_centering_image)


133
134
135
136
137
def postprocess_image(image: tf.Tensor,
                      is_training: bool = True,
                      num_frames: int = 32,
                      num_test_clips: int = 1,
                      num_test_crops: int = 1) -> tf.Tensor:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
138
139
140
141
142
143
144
145
146
147
148
149
150
  """Processes a batched Tensor of frames.

  The same parameters used in process should be used here.

  Args:
    image: Input Tensor of shape [batch, timesteps, height, width, 3].
    is_training: Whether or not in training mode. If True, random sample, crop
      and left right flip is used.
    num_frames: Number of frames per subclip.
    num_test_clips: Number of test clips (1 by default). If more than 1, this
      will sample multiple linearly spaced clips within each video at test time.
      If 1, then a single clip in the middle of the video is sampled. The clips
      are aggreagated in the batch dimension.
Yin Cui's avatar
Yin Cui committed
151
152
153
    num_test_crops: Number of test crops (1 by default). If more than 1, there
      are multiple crops for each clip at test time. If 1, there is a single
      central crop. The crops are aggreagated in the batch dimension.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
154
155
156

  Returns:
    Processed frames. Tensor of shape
Yin Cui's avatar
Yin Cui committed
157
      [batch * num_test_clips * num_test_crops, num_frames, height, width, 3].
Abdullah Rashwan's avatar
Abdullah Rashwan committed
158
  """
Yin Cui's avatar
Yin Cui committed
159
160
161
162
163
  num_views = num_test_clips * num_test_crops
  if num_views > 1 and not is_training:
    # In this case, multiple views are merged together in batch dimenstion which
    # will be batch * num_views.
    image = tf.reshape(image, [-1, num_frames] + image.shape[2:].as_list())
Abdullah Rashwan's avatar
Abdullah Rashwan committed
164
165
166
167

  return image


168
169
170
def process_label(label: tf.Tensor,
                  one_hot_label: bool = True,
                  num_classes: Optional[int] = None) -> tf.Tensor:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
171
172
173
174
175
176
177
178
179
180
181
182
  """Processes label Tensor."""
  # Validate parameters.
  if one_hot_label and not num_classes:
    raise ValueError(
        '`num_classes` should be given when requesting one hot label.')

  # Cast to tf.int32.
  label = tf.cast(label, dtype=tf.int32)

  if one_hot_label:
    # Replace label index by one hot representation.
    label = tf.one_hot(label, num_classes)
Yeqing Li's avatar
Yeqing Li committed
183
184
185
186
187
    if len(label.shape.as_list()) > 1:
      label = tf.reduce_sum(label, axis=0)
    if num_classes == 1:
      # The trick for single label.
      label = 1 - label
Abdullah Rashwan's avatar
Abdullah Rashwan committed
188
189
190
191
192
193
194
195
196
197

  return label


class Decoder(decoder.Decoder):
  """A tf.Example decoder for classification task."""

  def __init__(self, image_key: str = IMAGE_KEY, label_key: str = LABEL_KEY):
    self._context_description = {
        # One integer stored in context.
198
        label_key: tf.io.VarLenFeature(tf.int64),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
199
200
201
    }
    self._sequence_description = {
        # Each image is a string encoding JPEG.
202
        image_key: tf.io.FixedLenSequenceFeature((), tf.string),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
203
204
    }

Yeqing Li's avatar
Yeqing Li committed
205
206
207
208
209
210
211
212
213
214
215
216
  def add_feature(self, feature_name: str,
                  feature_type: Union[tf.io.VarLenFeature,
                                      tf.io.FixedLenFeature,
                                      tf.io.FixedLenSequenceFeature]):
    self._sequence_description[feature_name] = feature_type

  def add_context(self, feature_name: str,
                  feature_type: Union[tf.io.VarLenFeature,
                                      tf.io.FixedLenFeature,
                                      tf.io.FixedLenSequenceFeature]):
    self._context_description[feature_name] = feature_type

Abdullah Rashwan's avatar
Abdullah Rashwan committed
217
218
  def decode(self, serialized_example):
    """Parses a single tf.Example into image and label tensors."""
Yeqing Li's avatar
Yeqing Li committed
219
    result = {}
Abdullah Rashwan's avatar
Abdullah Rashwan committed
220
221
222
    context, sequences = tf.io.parse_single_sequence_example(
        serialized_example, self._context_description,
        self._sequence_description)
Yeqing Li's avatar
Yeqing Li committed
223
224
225
226
227
228
    result.update(context)
    result.update(sequences)
    for key, value in result.items():
      if isinstance(value, tf.SparseTensor):
        result[key] = tf.sparse.to_dense(value)
    return result
Abdullah Rashwan's avatar
Abdullah Rashwan committed
229
230
231
232
233
234
235
236
237
238
239


class Parser(parser.Parser):
  """Parses a video and label dataset."""

  def __init__(self,
               input_params: exp_cfg.DataConfig,
               image_key: str = IMAGE_KEY,
               label_key: str = LABEL_KEY):
    self._num_frames = input_params.feature_shape[0]
    self._stride = input_params.temporal_stride
240
    self._random_stride_range = input_params.random_stride_range
Abdullah Rashwan's avatar
Abdullah Rashwan committed
241
242
243
    self._num_test_clips = input_params.num_test_clips
    self._min_resize = input_params.min_image_size
    self._crop_size = input_params.feature_shape[1]
Yin Cui's avatar
Yin Cui committed
244
    self._num_crops = input_params.num_test_crops
Abdullah Rashwan's avatar
Abdullah Rashwan committed
245
246
247
248
    self._one_hot_label = input_params.one_hot
    self._num_classes = input_params.num_classes
    self._image_key = image_key
    self._label_key = label_key
249
    self._dtype = tf.dtypes.as_dtype(input_params.dtype)
Yeqing Li's avatar
Yeqing Li committed
250
    self._output_audio = input_params.output_audio
Yeqing Li's avatar
Yeqing Li committed
251
252
253
254
    self._min_aspect_ratio = input_params.aug_min_aspect_ratio
    self._max_aspect_ratio = input_params.aug_max_aspect_ratio
    self._min_area_ratio = input_params.aug_min_area_ratio
    self._max_area_ratio = input_params.aug_max_area_ratio
Yeqing Li's avatar
Yeqing Li committed
255
256
257
    if self._output_audio:
      self._audio_feature = input_params.audio_feature
      self._audio_shape = input_params.audio_feature_shape
Abdullah Rashwan's avatar
Abdullah Rashwan committed
258
259
260
261
262
263
264

  def _parse_train_data(
      self, decoded_tensors: Dict[str, tf.Tensor]
  ) -> Tuple[Dict[str, tf.Tensor], tf.Tensor]:
    """Parses data for training."""
    # Process image and label.
    image = decoded_tensors[self._image_key]
265
    image = process_image(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
266
267
268
269
        image=image,
        is_training=True,
        num_frames=self._num_frames,
        stride=self._stride,
270
        random_stride_range=self._random_stride_range,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
271
272
        num_test_clips=self._num_test_clips,
        min_resize=self._min_resize,
Yeqing Li's avatar
Yeqing Li committed
273
274
275
276
277
        crop_size=self._crop_size,
        min_aspect_ratio=self._min_aspect_ratio,
        max_aspect_ratio=self._max_aspect_ratio,
        min_area_ratio=self._min_area_ratio,
        max_area_ratio=self._max_area_ratio)
278
    image = tf.cast(image, dtype=self._dtype)
Yeqing Li's avatar
Yeqing Li committed
279
    features = {'image': image}
Yeqing Li's avatar
Yeqing Li committed
280
281

    label = decoded_tensors[self._label_key]
282
    label = process_label(label, self._one_hot_label, self._num_classes)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
283

Yeqing Li's avatar
Yeqing Li committed
284
285
286
287
288
289
290
291
292
293
    if self._output_audio:
      audio = decoded_tensors[self._audio_feature]
      audio = tf.cast(audio, dtype=self._dtype)
      # TODO(yeqing): synchronize audio/video sampling. Especially randomness.
      audio = preprocess_ops_3d.sample_sequence(
          audio, self._audio_shape[0], random=False, stride=1)
      audio = tf.ensure_shape(audio, self._audio_shape)
      features['audio'] = audio

    return features, label
Abdullah Rashwan's avatar
Abdullah Rashwan committed
294
295
296
297
298
299

  def _parse_eval_data(
      self, decoded_tensors: Dict[str, tf.Tensor]
  ) -> Tuple[Dict[str, tf.Tensor], tf.Tensor]:
    """Parses data for evaluation."""
    image = decoded_tensors[self._image_key]
300
    image = process_image(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
301
302
303
304
305
306
        image=image,
        is_training=False,
        num_frames=self._num_frames,
        stride=self._stride,
        num_test_clips=self._num_test_clips,
        min_resize=self._min_resize,
Yin Cui's avatar
Yin Cui committed
307
308
        crop_size=self._crop_size,
        num_crops=self._num_crops)
309
    image = tf.cast(image, dtype=self._dtype)
Yeqing Li's avatar
Yeqing Li committed
310
    features = {'image': image}
Yeqing Li's avatar
Yeqing Li committed
311
312

    label = decoded_tensors[self._label_key]
313
    label = process_label(label, self._one_hot_label, self._num_classes)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
314

Yeqing Li's avatar
Yeqing Li committed
315
316
317
318
319
    if self._output_audio:
      audio = decoded_tensors[self._audio_feature]
      audio = tf.cast(audio, dtype=self._dtype)
      audio = preprocess_ops_3d.sample_sequence(
          audio, 20, random=False, stride=1)
320
      audio = tf.ensure_shape(audio, self._audio_shape)
Yeqing Li's avatar
Yeqing Li committed
321
322
323
      features['audio'] = audio

    return features, label
Abdullah Rashwan's avatar
Abdullah Rashwan committed
324
325
326
327
328
329
330
331
332
333


class PostBatchProcessor(object):
  """Processes a video and label dataset which is batched."""

  def __init__(self, input_params: exp_cfg.DataConfig):
    self._is_training = input_params.is_training

    self._num_frames = input_params.feature_shape[0]
    self._num_test_clips = input_params.num_test_clips
Yin Cui's avatar
Yin Cui committed
334
    self._num_test_crops = input_params.num_test_crops
Abdullah Rashwan's avatar
Abdullah Rashwan committed
335

Yeqing Li's avatar
Yeqing Li committed
336
337
  def __call__(self, features: Dict[str, tf.Tensor],
               label: tf.Tensor) -> Tuple[Dict[str, tf.Tensor], tf.Tensor]:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
338
    """Parses a single tf.Example into image and label tensors."""
339
    for key in ['image']:
Yeqing Li's avatar
Yeqing Li committed
340
      if key in features:
341
        features[key] = postprocess_image(
Yeqing Li's avatar
Yeqing Li committed
342
343
344
            image=features[key],
            is_training=self._is_training,
            num_frames=self._num_frames,
Yin Cui's avatar
Yin Cui committed
345
346
            num_test_clips=self._num_test_clips,
            num_test_crops=self._num_test_crops)
Yeqing Li's avatar
Yeqing Li committed
347
348

    return features, label