"docs/examples/pulsar_cam_unified.py" did not exist on "960fd6d8b6f55257dc1d205e8c8f3366202c23b7"
classification_input.py 4.91 KB
Newer Older
Abdullah Rashwan's avatar
Abdullah Rashwan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Classification decoder and parser."""
# Import libraries
import tensorflow as tf

from official.vision.beta.dataloaders import decoder
from official.vision.beta.dataloaders import parser
from official.vision.beta.ops import preprocess_ops

MEAN_RGB = (0.485 * 255, 0.456 * 255, 0.406 * 255)
STDDEV_RGB = (0.229 * 255, 0.224 * 255, 0.225 * 255)


class Decoder(decoder.Decoder):
  """A tf.Example decoder for classification task."""

  def __init__(self):
    self._keys_to_features = {
        'image/encoded': tf.io.FixedLenFeature((), tf.string, default_value=''),
        'image/class/label': (
            tf.io.FixedLenFeature((), tf.int64, default_value=-1))
    }
anivegesana's avatar
anivegesana committed
36
  '''
Abdullah Rashwan's avatar
Abdullah Rashwan committed
37
38
39
  def decode(self, serialized_example):
    return tf.io.parse_single_example(
        serialized_example, self._keys_to_features)
anivegesana's avatar
anivegesana committed
40
41
42
  '''
  def decode(self, data):
      return {'image/encoded': data['image'], 'image/class/label': data['label']}
Abdullah Rashwan's avatar
Abdullah Rashwan committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

class Parser(parser.Parser):
  """Parser to parse an image and its annotations into a dictionary of tensors."""

  def __init__(self,
               output_size,
               num_classes,
               aug_rand_hflip=True,
               dtype='float32'):
    """Initializes parameters for parsing annotations in the dataset.

    Args:
      output_size: `Tenssor` or `list` for [height, width] of output image. The
        output_size should be divided by the largest feature stride 2^max_level.
      num_classes: `float`, number of classes.
      aug_rand_hflip: `bool`, if True, augment training with random
        horizontal flip.
      dtype: `str`, cast output image in dtype. It can be 'float32', 'float16',
        or 'bfloat16'.
    """
    self._output_size = output_size
    self._aug_rand_hflip = aug_rand_hflip
    self._num_classes = num_classes
    if dtype == 'float32':
      self._dtype = tf.float32
    elif dtype == 'float16':
      self._dtype = tf.float16
    elif dtype == 'bfloat16':
      self._dtype = tf.bfloat16
    else:
      raise ValueError('dtype {!r} is not supported!'.format(dtype))

  def _parse_train_data(self, decoded_tensors):
    """Parses data for training."""
anivegesana's avatar
anivegesana committed
77
    
Abdullah Rashwan's avatar
Abdullah Rashwan committed
78
    label = tf.cast(decoded_tensors['image/class/label'], dtype=tf.int32)
anivegesana's avatar
anivegesana committed
79
    '''
Abdullah Rashwan's avatar
Abdullah Rashwan committed
80
81
82
83
84
85
86
87
88
89
    image_bytes = decoded_tensors['image/encoded']
    image_shape = tf.image.extract_jpeg_shape(image_bytes)
    # Crops image.
    # TODO(pengchong): support image format other than JPEG.
    cropped_image = preprocess_ops.random_crop_image_v2(
        image_bytes, image_shape)
    image = tf.cond(
        tf.reduce_all(tf.equal(tf.shape(cropped_image), image_shape)),
        lambda: preprocess_ops.center_crop_image_v2(image_bytes, image_shape),
        lambda: cropped_image)
anivegesana's avatar
anivegesana committed
90
91
    '''
    image = tf.cast(decoded_tensors['image/encoded'], tf.float32)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
    if self._aug_rand_hflip:
      image = tf.image.random_flip_left_right(image)

    # Resizes image.
    image = tf.image.resize(
        image, self._output_size, method=tf.image.ResizeMethod.BILINEAR)

    # Normalizes image with mean and std pixel values.
    image = preprocess_ops.normalize_image(image,
                                           offset=MEAN_RGB,
                                           scale=STDDEV_RGB)

    # Convert image to self._dtype.
    image = tf.image.convert_image_dtype(image, self._dtype)

    return image, label

  def _parse_eval_data(self, decoded_tensors):
    """Parses data for evaluation."""
    label = tf.cast(decoded_tensors['image/class/label'], dtype=tf.int32)
anivegesana's avatar
anivegesana committed
112
    '''
Abdullah Rashwan's avatar
Abdullah Rashwan committed
113
114
    image_bytes = decoded_tensors['image/encoded']
    image_shape = tf.image.extract_jpeg_shape(image_bytes)
anivegesana's avatar
anivegesana committed
115
    
Abdullah Rashwan's avatar
Abdullah Rashwan committed
116
117
    # Center crops and resizes image.
    image = preprocess_ops.center_crop_image_v2(image_bytes, image_shape)
anivegesana's avatar
anivegesana committed
118
119
    '''
    image = tf.cast(decoded_tensors['image/encoded'], tf.float32)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
    image = tf.image.resize(
        image, self._output_size, method=tf.image.ResizeMethod.BILINEAR)

    image = tf.reshape(image, [self._output_size[0], self._output_size[1], 3])

    # Normalizes image with mean and std pixel values.
    image = preprocess_ops.normalize_image(image,
                                           offset=MEAN_RGB,
                                           scale=STDDEV_RGB)

    # Convert image to self._dtype.
    image = tf.image.convert_image_dtype(image, self._dtype)

    return image, label