"megatron/data/albert_dataset.py" did not exist on "f51ceb7c9b6d01e36b20d8aa4cb6be139fa70180"
classifier_data_lib.py 41.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""BERT library to process data for classification task."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import csv
23
import importlib
24
25
26
27
import os

from absl import logging
import tensorflow as tf
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
28
import tensorflow_datasets as tfds
29

30
from official.nlp.bert import tokenization
31
32
33


class InputExample(object):
34
  """A single training/test example for simple seq regression/classification."""
35

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
36
37
38
39
40
41
42
  def __init__(self,
               guid,
               text_a,
               text_b=None,
               label=None,
               weight=None,
               int_iden=None):
43
44
45
46
47
48
49
50
    """Constructs a InputExample.

    Args:
      guid: Unique id for the example.
      text_a: string. The untokenized text of the first sequence. For single
        sequence tasks, only this sequence must be specified.
      text_b: (Optional) string. The untokenized text of the second sequence.
        Only must be specified for sequence pair tasks.
51
52
53
      label: (Optional) string for classification, float for regression. The
        label of the example. This should be specified for train and dev
        examples, but not for test examples.
Maxim Neumann's avatar
Maxim Neumann committed
54
55
      weight: (Optional) float. The weight of the example to be used during
        training.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
56
57
      int_iden: (Optional) int. The int identification number of example in the
        corpus.
58
59
60
61
62
    """
    self.guid = guid
    self.text_a = text_a
    self.text_b = text_b
    self.label = label
Maxim Neumann's avatar
Maxim Neumann committed
63
    self.weight = weight
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
64
    self.int_iden = int_iden
65
66
67
68
69
70
71
72
73
74


class InputFeatures(object):
  """A single set of features of data."""

  def __init__(self,
               input_ids,
               input_mask,
               segment_ids,
               label_id,
Maxim Neumann's avatar
Maxim Neumann committed
75
               is_real_example=True,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
76
77
               weight=None,
               int_iden=None):
78
79
80
81
82
    self.input_ids = input_ids
    self.input_mask = input_mask
    self.segment_ids = segment_ids
    self.label_id = label_id
    self.is_real_example = is_real_example
Maxim Neumann's avatar
Maxim Neumann committed
83
    self.weight = weight
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
84
    self.int_iden = int_iden
85
86
87


class DataProcessor(object):
88
  """Base class for converters for seq regression/classification datasets."""
89

90
91
  def __init__(self, process_text_fn=tokenization.convert_to_unicode):
    self.process_text_fn = process_text_fn
92
93
    self.is_regression = False
    self.label_type = None
94

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
  def get_train_examples(self, data_dir):
    """Gets a collection of `InputExample`s for the train set."""
    raise NotImplementedError()

  def get_dev_examples(self, data_dir):
    """Gets a collection of `InputExample`s for the dev set."""
    raise NotImplementedError()

  def get_test_examples(self, data_dir):
    """Gets a collection of `InputExample`s for prediction."""
    raise NotImplementedError()

  def get_labels(self):
    """Gets the list of labels for this data set."""
    raise NotImplementedError()

  @staticmethod
  def get_processor_name():
    """Gets the string identifier of the processor."""
    raise NotImplementedError()

  @classmethod
  def _read_tsv(cls, input_file, quotechar=None):
    """Reads a tab separated value file."""
    with tf.io.gfile.GFile(input_file, "r") as f:
      reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
      lines = []
      for line in reader:
        lines.append(line)
      return lines


127
128
class ColaProcessor(DataProcessor):
  """Processor for the CoLA data set (GLUE version)."""
129
130
131

  def get_train_examples(self, data_dir):
    """See base class."""
132
133
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
134
135
136

  def get_dev_examples(self, data_dir):
    """See base class."""
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "COLA"

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
155
    """Creates examples for the training/dev/test sets."""
156
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
157
158
    for i, line in enumerate(lines):
      # Only the test set has a header.
159
      if set_type == "test" and i == 0:
160
        continue
161
162
163
164
165
166
167
      guid = "%s-%s" % (set_type, i)
      if set_type == "test":
        text_a = self.process_text_fn(line[1])
        label = "0"
      else:
        text_a = self.process_text_fn(line[3])
        label = self.process_text_fn(line[1])
168
      examples.append(
169
          InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
170
171
    return examples

172
173
174
175

class MnliProcessor(DataProcessor):
  """Processor for the MultiNLI data set (GLUE version)."""

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
176
177
178
179
180
181
182
183
  def __init__(self,
               mnli_type="matched",
               process_text_fn=tokenization.convert_to_unicode):
    super(MnliProcessor, self).__init__(process_text_fn)
    if mnli_type not in ("matched", "mismatched"):
      raise ValueError("Invalid `mnli_type`: %s" % mnli_type)
    self.mnli_type = mnli_type

184
185
186
187
188
189
190
  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
191
192
193
194
195
196
197
198
    if self.mnli_type == "matched":
      return self._create_examples(
          self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")),
          "dev_matched")
    else:
      return self._create_examples(
          self._read_tsv(os.path.join(data_dir, "dev_mismatched.tsv")),
          "dev_mismatched")
199

Tianqi Liu's avatar
Tianqi Liu committed
200
201
  def get_test_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
202
203
204
205
206
207
    if self.mnli_type == "matched":
      return self._create_examples(
          self._read_tsv(os.path.join(data_dir, "test_matched.tsv")), "test")
    else:
      return self._create_examples(
          self._read_tsv(os.path.join(data_dir, "test_mismatched.tsv")), "test")
Tianqi Liu's avatar
Tianqi Liu committed
208

209
210
211
212
213
214
215
  def get_labels(self):
    """See base class."""
    return ["contradiction", "entailment", "neutral"]

  @staticmethod
  def get_processor_name():
    """See base class."""
216
    return "MNLI"
Tianqi Liu's avatar
Tianqi Liu committed
217

218
  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
219
    """Creates examples for the training/dev/test sets."""
Tianqi Liu's avatar
Tianqi Liu committed
220
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
221
    for i, line in enumerate(lines):
222
223
224
225
226
227
228
229
230
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, self.process_text_fn(line[0]))
      text_a = self.process_text_fn(line[8])
      text_b = self.process_text_fn(line[9])
      if set_type == "test":
        label = "contradiction"
      else:
        label = self.process_text_fn(line[-1])
Tianqi Liu's avatar
Tianqi Liu committed
231
232
233
234
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

235
236
237
238
239
240
241
242
243

class MrpcProcessor(DataProcessor):
  """Processor for the MRPC data set (GLUE version)."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

Tianqi Liu's avatar
Tianqi Liu committed
244
245
  def get_dev_examples(self, data_dir):
    """See base class."""
246
247
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
Tianqi Liu's avatar
Tianqi Liu committed
248
249
250

  def get_test_examples(self, data_dir):
    """See base class."""
251
252
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
Tianqi Liu's avatar
Tianqi Liu committed
253
254
255

  def get_labels(self):
    """See base class."""
256
    return ["0", "1"]
Tianqi Liu's avatar
Tianqi Liu committed
257
258
259
260

  @staticmethod
  def get_processor_name():
    """See base class."""
261
262
263
    return "MRPC"

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
264
    """Creates examples for the training/dev/test sets."""
265
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
266
    for i, line in enumerate(lines):
267
268
269
270
271
272
273
274
275
276
277
278
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, i)
      text_a = self.process_text_fn(line[3])
      text_b = self.process_text_fn(line[4])
      if set_type == "test":
        label = "0"
      else:
        label = self.process_text_fn(line[0])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples
Tianqi Liu's avatar
Tianqi Liu committed
279
280
281
282
283
284


class PawsxProcessor(DataProcessor):
  """Processor for the PAWS-X data set."""
  supported_languages = ["de", "en", "es", "fr", "ja", "ko", "zh"]

Tianqi Liu's avatar
Tianqi Liu committed
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
  def __init__(self,
               language="en",
               process_text_fn=tokenization.convert_to_unicode):
    super(PawsxProcessor, self).__init__(process_text_fn)
    if language == "all":
      self.languages = PawsxProcessor.supported_languages
    elif language not in PawsxProcessor.supported_languages:
      raise ValueError("language %s is not supported for PAWS-X task." %
                       language)
    else:
      self.languages = [language]

  def get_train_examples(self, data_dir):
    """See base class."""
    lines = []
    for language in self.languages:
      if language == "en":
        train_tsv = "train.tsv"
      else:
        train_tsv = "translated_train.tsv"
      # Skips the header.
      lines.extend(
Tianqi Liu's avatar
Tianqi Liu committed
307
          self._read_tsv(os.path.join(data_dir, language, train_tsv))[1:])
Tianqi Liu's avatar
Tianqi Liu committed
308
309

    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
310
    for i, line in enumerate(lines):
Tianqi Liu's avatar
Tianqi Liu committed
311
312
313
314
315
316
317
318
319
320
321
      guid = "train-%d" % i
      text_a = self.process_text_fn(line[1])
      text_b = self.process_text_fn(line[2])
      label = self.process_text_fn(line[3])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_dev_examples(self, data_dir):
    """See base class."""
    lines = []
Tianqi Liu's avatar
Tianqi Liu committed
322
    for lang in PawsxProcessor.supported_languages:
Tianqi Liu's avatar
Tianqi Liu committed
323
324
      lines.extend(
          self._read_tsv(os.path.join(data_dir, lang, "dev_2k.tsv"))[1:])
Tianqi Liu's avatar
Tianqi Liu committed
325
326

    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
327
    for i, line in enumerate(lines):
Tianqi Liu's avatar
Tianqi Liu committed
328
      guid = "dev-%d" % i
Tianqi Liu's avatar
Tianqi Liu committed
329
330
331
      text_a = self.process_text_fn(line[1])
      text_b = self.process_text_fn(line[2])
      label = self.process_text_fn(line[3])
Tianqi Liu's avatar
Tianqi Liu committed
332
333
334
335
336
337
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_test_examples(self, data_dir):
    """See base class."""
Tianqi Liu's avatar
Tianqi Liu committed
338
339
    examples_by_lang = {k: [] for k in self.supported_languages}
    for lang in self.supported_languages:
Tianqi Liu's avatar
Tianqi Liu committed
340
      lines = self._read_tsv(os.path.join(data_dir, lang, "test_2k.tsv"))[1:]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
341
      for i, line in enumerate(lines):
Tianqi Liu's avatar
Tianqi Liu committed
342
        guid = "test-%d" % i
Tianqi Liu's avatar
Tianqi Liu committed
343
344
345
        text_a = self.process_text_fn(line[1])
        text_b = self.process_text_fn(line[2])
        label = self.process_text_fn(line[3])
Tianqi Liu's avatar
Tianqi Liu committed
346
        examples_by_lang[lang].append(
Tianqi Liu's avatar
Tianqi Liu committed
347
348
349
350
351
352
353
354
355
356
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples_by_lang

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
Tianqi Liu's avatar
Tianqi Liu committed
357
358
359
    return "XTREME-PAWS-X"


360
361
class QnliProcessor(DataProcessor):
  """Processor for the QNLI data set (GLUE version)."""
Saurabh Saxena's avatar
Saurabh Saxena committed
362
363
364
365
366
367
368
369
370

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
371
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev_matched")
Saurabh Saxena's avatar
Saurabh Saxena committed
372
373
374
375
376
377
378
379

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
380
    return ["entailment", "not_entailment"]
Saurabh Saxena's avatar
Saurabh Saxena committed
381
382
383
384

  @staticmethod
  def get_processor_name():
    """See base class."""
385
    return "QNLI"
Saurabh Saxena's avatar
Saurabh Saxena committed
386
387

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
388
    """Creates examples for the training/dev/test sets."""
Saurabh Saxena's avatar
Saurabh Saxena committed
389
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
390
    for i, line in enumerate(lines):
Saurabh Saxena's avatar
Saurabh Saxena committed
391
392
      if i == 0:
        continue
393
394
395
396
397
398
399
400
401
      guid = "%s-%s" % (set_type, 1)
      if set_type == "test":
        text_a = tokenization.convert_to_unicode(line[1])
        text_b = tokenization.convert_to_unicode(line[2])
        label = "entailment"
      else:
        text_a = tokenization.convert_to_unicode(line[1])
        text_b = tokenization.convert_to_unicode(line[2])
        label = tokenization.convert_to_unicode(line[-1])
Tianqi Liu's avatar
Tianqi Liu committed
402
403
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
Saurabh Saxena's avatar
Saurabh Saxena committed
404
405
406
    return examples


407
408
class QqpProcessor(DataProcessor):
  """Processor for the QQP data set (GLUE version)."""
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
432
    return "QQP"
433
434

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
435
    """Creates examples for the training/dev/test sets."""
436
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
437
    for i, line in enumerate(lines):
438
439
440
441
442
443
444
445
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, line[0])
      try:
        text_a = line[3]
        text_b = line[4]
        label = line[5]
      except IndexError:
446
447
        continue
      examples.append(
448
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
449
450
451
    return examples


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
class RteProcessor(DataProcessor):
  """Processor for the RTE data set (GLUE version)."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
    # All datasets are converted to 2-class split, where for 3-class datasets we
    # collapse neutral and contradiction into not_entailment.
    return ["entailment", "not_entailment"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "RTE"

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
482
    """Creates examples for the training/dev/test sets."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
483
484
485
486
487
    examples = []
    for i, line in enumerate(lines):
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, i)
488
489
      text_a = tokenization.convert_to_unicode(line[1])
      text_b = tokenization.convert_to_unicode(line[2])
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
490
491
492
493
494
495
496
497
498
      if set_type == "test":
        label = "entailment"
      else:
        label = tokenization.convert_to_unicode(line[3])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples


499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
class SstProcessor(DataProcessor):
  """Processor for the SST-2 data set (GLUE version)."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "SST-2"

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
527
    """Creates examples for the training/dev/test sets."""
528
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
529
    for i, line in enumerate(lines):
530
531
532
533
534
535
536
537
538
539
540
541
542
543
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, i)
      if set_type == "test":
        text_a = tokenization.convert_to_unicode(line[1])
        label = "0"
      else:
        text_a = tokenization.convert_to_unicode(line[0])
        label = tokenization.convert_to_unicode(line[1])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
    return examples


544
545
546
547
548
549
550
551
class StsBProcessor(DataProcessor):
  """Processor for the STS-B data set (GLUE version)."""

  def __init__(self, process_text_fn=tokenization.convert_to_unicode):
    super(StsBProcessor, self).__init__(process_text_fn=process_text_fn)
    self.is_regression = True
    self.label_type = float
    self._labels = None
552
553
554
555
556
557
558
559
560

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
561
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
562
563
564
565
566
567
568
569

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
570
    return self._labels
571
572
573
574

  @staticmethod
  def get_processor_name():
    """See base class."""
575
    return "STS-B"
576
577

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
578
    """Creates examples for the training/dev/test sets."""
579
    examples = []
580
    for i, line in enumerate(lines):
581
582
      if i == 0:
        continue
583
584
585
      guid = "%s-%s" % (set_type, i)
      text_a = tokenization.convert_to_unicode(line[7])
      text_b = tokenization.convert_to_unicode(line[8])
586
      if set_type == "test":
587
        label = 0.0
588
      else:
589
        label = self.label_type(tokenization.convert_to_unicode(line[9]))
590
591
592
593
594
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
595
class TfdsProcessor(DataProcessor):
Maxim Neumann's avatar
Maxim Neumann committed
596
  """Processor for generic text classification and regression TFDS data set.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
597
598
599
600
601
602
603
604
605
606

  The TFDS parameters are expected to be provided in the tfds_params string, in
  a comma-separated list of parameter assignments.
  Examples:
    tfds_params="dataset=scicite,text_key=string"
    tfds_params="dataset=imdb_reviews,test_split=,dev_split=test"
    tfds_params="dataset=glue/cola,text_key=sentence"
    tfds_params="dataset=glue/sst2,text_key=sentence"
    tfds_params="dataset=glue/qnli,text_key=question,text_b_key=sentence"
    tfds_params="dataset=glue/mrpc,text_key=sentence1,text_b_key=sentence2"
Maxim Neumann's avatar
Maxim Neumann committed
607
608
    tfds_params="dataset=glue/stsb,text_key=sentence1,text_b_key=sentence2,"
                "is_regression=true,label_type=float"
Maxim Neumann's avatar
Maxim Neumann committed
609
610
    tfds_params="dataset=snli,text_key=premise,text_b_key=hypothesis,"
                "skip_label=-1"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
611
612
613
614
  Possible parameters (please refer to the documentation of Tensorflow Datasets
  (TFDS) for the meaning of individual parameters):
    dataset: Required dataset name (potentially with subset and version number).
    data_dir: Optional TFDS source root directory.
615
    module_import: Optional Dataset module to import.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
616
617
618
619
620
621
622
623
624
    train_split: Name of the train split (defaults to `train`).
    dev_split: Name of the dev split (defaults to `validation`).
    test_split: Name of the test split (defaults to `test`).
    text_key: Key of the text_a feature (defaults to `text`).
    text_b_key: Key of the second text feature if available.
    label_key: Key of the label feature (defaults to `label`).
    test_text_key: Key of the text feature to use in test set.
    test_text_b_key: Key of the second text feature to use in test set.
    test_label: String to be used as the label for all test examples.
Maxim Neumann's avatar
Maxim Neumann committed
625
    label_type: Type of the label key (defaults to `int`).
Maxim Neumann's avatar
Maxim Neumann committed
626
    weight_key: Key of the float sample weight (is not used if not provided).
Maxim Neumann's avatar
Maxim Neumann committed
627
    is_regression: Whether the task is a regression problem (defaults to False).
Maxim Neumann's avatar
Maxim Neumann committed
628
    skip_label: Skip examples with given label (defaults to None).
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
629
630
  """

Tianqi Liu's avatar
Tianqi Liu committed
631
632
  def __init__(self,
               tfds_params,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
633
634
635
               process_text_fn=tokenization.convert_to_unicode):
    super(TfdsProcessor, self).__init__(process_text_fn)
    self._process_tfds_params_str(tfds_params)
636
637
638
    if self.module_import:
      importlib.import_module(self.module_import)

Tianqi Liu's avatar
Tianqi Liu committed
639
640
    self.dataset, info = tfds.load(
        self.dataset_name, data_dir=self.data_dir, with_info=True)
Maxim Neumann's avatar
Maxim Neumann committed
641
642
643
644
    if self.is_regression:
      self._labels = None
    else:
      self._labels = list(range(info.features[self.label_key].num_classes))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
645
646
647

  def _process_tfds_params_str(self, params_str):
    """Extracts TFDS parameters from a comma-separated assignements string."""
Maxim Neumann's avatar
Maxim Neumann committed
648
649
650
    dtype_map = {"int": int, "float": float}
    cast_str_to_bool = lambda s: s.lower() not in ["false", "0"]

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
651
652
653
654
    tuples = [x.split("=") for x in params_str.split(",")]
    d = {k.strip(): v.strip() for k, v in tuples}
    self.dataset_name = d["dataset"]  # Required.
    self.data_dir = d.get("data_dir", None)
655
    self.module_import = d.get("module_import", None)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
656
657
658
659
660
661
662
663
664
    self.train_split = d.get("train_split", "train")
    self.dev_split = d.get("dev_split", "validation")
    self.test_split = d.get("test_split", "test")
    self.text_key = d.get("text_key", "text")
    self.text_b_key = d.get("text_b_key", None)
    self.label_key = d.get("label_key", "label")
    self.test_text_key = d.get("test_text_key", self.text_key)
    self.test_text_b_key = d.get("test_text_b_key", self.text_b_key)
    self.test_label = d.get("test_label", "test_example")
Maxim Neumann's avatar
Maxim Neumann committed
665
666
    self.label_type = dtype_map[d.get("label_type", "int")]
    self.is_regression = cast_str_to_bool(d.get("is_regression", "False"))
Maxim Neumann's avatar
Maxim Neumann committed
667
    self.weight_key = d.get("weight_key", None)
Maxim Neumann's avatar
Maxim Neumann committed
668
669
670
    self.skip_label = d.get("skip_label", None)
    if self.skip_label is not None:
      self.skip_label = self.label_type(self.skip_label)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690

  def get_train_examples(self, data_dir):
    assert data_dir is None
    return self._create_examples(self.train_split, "train")

  def get_dev_examples(self, data_dir):
    assert data_dir is None
    return self._create_examples(self.dev_split, "dev")

  def get_test_examples(self, data_dir):
    assert data_dir is None
    return self._create_examples(self.test_split, "test")

  def get_labels(self):
    return self._labels

  def get_processor_name(self):
    return "TFDS_" + self.dataset_name

  def _create_examples(self, split_name, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
691
    """Creates examples for the training/dev/test sets."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
692
693
694
695
    if split_name not in self.dataset:
      raise ValueError("Split {} not available.".format(split_name))
    dataset = self.dataset[split_name].as_numpy_iterator()
    examples = []
Maxim Neumann's avatar
Maxim Neumann committed
696
    text_b, weight = None, None
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
697
698
699
700
701
702
703
704
705
706
707
    for i, example in enumerate(dataset):
      guid = "%s-%s" % (set_type, i)
      if set_type == "test":
        text_a = self.process_text_fn(example[self.test_text_key])
        if self.test_text_b_key:
          text_b = self.process_text_fn(example[self.test_text_b_key])
        label = self.test_label
      else:
        text_a = self.process_text_fn(example[self.text_key])
        if self.text_b_key:
          text_b = self.process_text_fn(example[self.text_b_key])
Maxim Neumann's avatar
Maxim Neumann committed
708
        label = self.label_type(example[self.label_key])
Maxim Neumann's avatar
Maxim Neumann committed
709
710
        if self.skip_label is not None and label == self.skip_label:
          continue
Maxim Neumann's avatar
Maxim Neumann committed
711
712
      if self.weight_key:
        weight = float(example[self.weight_key])
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
713
      examples.append(
Tianqi Liu's avatar
Tianqi Liu committed
714
715
716
717
718
719
          InputExample(
              guid=guid,
              text_a=text_a,
              text_b=text_b,
              label=label,
              weight=weight))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
720
721
722
    return examples


723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
class WnliProcessor(DataProcessor):
  """Processor for the WNLI data set (GLUE version)."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "WNLI"

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
751
    """Creates examples for the training/dev/test sets."""
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
    examples = []
    for i, line in enumerate(lines):
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, i)
      text_a = tokenization.convert_to_unicode(line[1])
      text_b = tokenization.convert_to_unicode(line[2])
      if set_type == "test":
        label = "0"
      else:
        label = tokenization.convert_to_unicode(line[3])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples


768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
class XnliProcessor(DataProcessor):
  """Processor for the XNLI data set."""
  supported_languages = [
      "ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr",
      "ur", "vi", "zh"
  ]

  def __init__(self,
               language="en",
               process_text_fn=tokenization.convert_to_unicode):
    super(XnliProcessor, self).__init__(process_text_fn)
    if language == "all":
      self.languages = XnliProcessor.supported_languages
    elif language not in XnliProcessor.supported_languages:
      raise ValueError("language %s is not supported for XNLI task." % language)
    else:
      self.languages = [language]

  def get_train_examples(self, data_dir):
    """See base class."""
    lines = []
    for language in self.languages:
      # Skips the header.
      lines.extend(
          self._read_tsv(
              os.path.join(data_dir, "multinli",
                           "multinli.train.%s.tsv" % language))[1:])

    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
797
    for i, line in enumerate(lines):
798
799
800
801
802
803
804
805
806
807
808
809
810
811
      guid = "train-%d" % i
      text_a = self.process_text_fn(line[0])
      text_b = self.process_text_fn(line[1])
      label = self.process_text_fn(line[2])
      if label == self.process_text_fn("contradictory"):
        label = self.process_text_fn("contradiction")
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_dev_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(os.path.join(data_dir, "xnli.dev.tsv"))
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
812
    for i, line in enumerate(lines):
813
814
815
816
817
818
819
820
821
822
823
824
825
826
      if i == 0:
        continue
      guid = "dev-%d" % i
      text_a = self.process_text_fn(line[6])
      text_b = self.process_text_fn(line[7])
      label = self.process_text_fn(line[1])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_test_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(os.path.join(data_dir, "xnli.test.tsv"))
    examples_by_lang = {k: [] for k in XnliProcessor.supported_languages}
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
827
    for i, line in enumerate(lines):
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
      if i == 0:
        continue
      guid = "test-%d" % i
      language = self.process_text_fn(line[0])
      text_a = self.process_text_fn(line[6])
      text_b = self.process_text_fn(line[7])
      label = self.process_text_fn(line[1])
      examples_by_lang[language].append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples_by_lang

  def get_labels(self):
    """See base class."""
    return ["contradiction", "entailment", "neutral"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "XNLI"


class XtremePawsxProcessor(DataProcessor):
  """Processor for the XTREME PAWS-X data set."""
  supported_languages = ["de", "en", "es", "fr", "ja", "ko", "zh"]

  def get_train_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(os.path.join(data_dir, "train-en.tsv"))
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
857
    for i, line in enumerate(lines):
858
859
860
861
862
863
864
865
866
867
868
869
870
      guid = "train-%d" % i
      text_a = self.process_text_fn(line[0])
      text_b = self.process_text_fn(line[1])
      label = self.process_text_fn(line[2])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_dev_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(os.path.join(data_dir, "dev-en.tsv"))

    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
871
    for i, line in enumerate(lines):
872
873
874
875
876
877
878
879
880
881
882
883
884
      guid = "dev-%d" % i
      text_a = self.process_text_fn(line[0])
      text_b = self.process_text_fn(line[1])
      label = self.process_text_fn(line[2])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_test_examples(self, data_dir):
    """See base class."""
    examples_by_lang = {k: [] for k in self.supported_languages}
    for lang in self.supported_languages:
      lines = self._read_tsv(os.path.join(data_dir, f"test-{lang}.tsv"))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
885
      for i, line in enumerate(lines):
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
        guid = "test-%d" % i
        text_a = self.process_text_fn(line[0])
        text_b = self.process_text_fn(line[1])
        label = "0"
        examples_by_lang[lang].append(
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples_by_lang

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "XTREME-PAWS-X"


class XtremeXnliProcessor(DataProcessor):
  """Processor for the XTREME XNLI data set."""
  supported_languages = [
      "ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr",
      "ur", "vi", "zh"
  ]

  def get_train_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(os.path.join(data_dir, "train-en.tsv"))

    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
916
    for i, line in enumerate(lines):
917
918
919
920
921
922
923
924
925
926
927
928
      guid = "train-%d" % i
      text_a = self.process_text_fn(line[0])
      text_b = self.process_text_fn(line[1])
      label = self.process_text_fn(line[2])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_dev_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(os.path.join(data_dir, "dev-en.tsv"))
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
929
    for i, line in enumerate(lines):
930
931
932
933
934
935
936
937
938
939
940
941
942
      guid = "dev-%d" % i
      text_a = self.process_text_fn(line[0])
      text_b = self.process_text_fn(line[1])
      label = self.process_text_fn(line[2])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_test_examples(self, data_dir):
    """See base class."""
    examples_by_lang = {k: [] for k in self.supported_languages}
    for lang in self.supported_languages:
      lines = self._read_tsv(os.path.join(data_dir, f"test-{lang}.tsv"))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
943
      for i, line in enumerate(lines):
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
        guid = f"test-{i}"
        text_a = self.process_text_fn(line[0])
        text_b = self.process_text_fn(line[1])
        label = "contradiction"
        examples_by_lang[lang].append(
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples_by_lang

  def get_labels(self):
    """See base class."""
    return ["contradiction", "entailment", "neutral"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "XTREME-XNLI"


962
963
964
965
def convert_single_example(ex_index, example, label_list, max_seq_length,
                           tokenizer):
  """Converts a single `InputExample` into a single `InputFeatures`."""
  label_map = {}
Maxim Neumann's avatar
Maxim Neumann committed
966
967
968
  if label_list:
    for (i, label) in enumerate(label_list):
      label_map[label] = i
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035

  tokens_a = tokenizer.tokenize(example.text_a)
  tokens_b = None
  if example.text_b:
    tokens_b = tokenizer.tokenize(example.text_b)

  if tokens_b:
    # Modifies `tokens_a` and `tokens_b` in place so that the total
    # length is less than the specified length.
    # Account for [CLS], [SEP], [SEP] with "- 3"
    _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
  else:
    # Account for [CLS] and [SEP] with "- 2"
    if len(tokens_a) > max_seq_length - 2:
      tokens_a = tokens_a[0:(max_seq_length - 2)]

  # The convention in BERT is:
  # (a) For sequence pairs:
  #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
  #  type_ids: 0     0  0    0    0     0       0 0     1  1  1  1   1 1
  # (b) For single sequences:
  #  tokens:   [CLS] the dog is hairy . [SEP]
  #  type_ids: 0     0   0   0  0     0 0
  #
  # Where "type_ids" are used to indicate whether this is the first
  # sequence or the second sequence. The embedding vectors for `type=0` and
  # `type=1` were learned during pre-training and are added to the wordpiece
  # embedding vector (and position vector). This is not *strictly* necessary
  # since the [SEP] token unambiguously separates the sequences, but it makes
  # it easier for the model to learn the concept of sequences.
  #
  # For classification tasks, the first vector (corresponding to [CLS]) is
  # used as the "sentence vector". Note that this only makes sense because
  # the entire model is fine-tuned.
  tokens = []
  segment_ids = []
  tokens.append("[CLS]")
  segment_ids.append(0)
  for token in tokens_a:
    tokens.append(token)
    segment_ids.append(0)
  tokens.append("[SEP]")
  segment_ids.append(0)

  if tokens_b:
    for token in tokens_b:
      tokens.append(token)
      segment_ids.append(1)
    tokens.append("[SEP]")
    segment_ids.append(1)

  input_ids = tokenizer.convert_tokens_to_ids(tokens)

  # The mask has 1 for real tokens and 0 for padding tokens. Only real
  # tokens are attended to.
  input_mask = [1] * len(input_ids)

  # Zero-pad up to the sequence length.
  while len(input_ids) < max_seq_length:
    input_ids.append(0)
    input_mask.append(0)
    segment_ids.append(0)

  assert len(input_ids) == max_seq_length
  assert len(input_mask) == max_seq_length
  assert len(segment_ids) == max_seq_length

Maxim Neumann's avatar
Maxim Neumann committed
1036
  label_id = label_map[example.label] if label_map else example.label
1037
1038
  if ex_index < 5:
    logging.info("*** Example ***")
1039
1040
1041
1042
1043
1044
    logging.info("guid: %s", (example.guid))
    logging.info("tokens: %s",
                 " ".join([tokenization.printable_text(x) for x in tokens]))
    logging.info("input_ids: %s", " ".join([str(x) for x in input_ids]))
    logging.info("input_mask: %s", " ".join([str(x) for x in input_mask]))
    logging.info("segment_ids: %s", " ".join([str(x) for x in segment_ids]))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1045
    logging.info("label: %s (id = %s)", example.label, str(label_id))
Maxim Neumann's avatar
Maxim Neumann committed
1046
    logging.info("weight: %s", example.weight)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1047
    logging.info("int_iden: %s", str(example.int_iden))
1048
1049
1050
1051
1052
1053

  feature = InputFeatures(
      input_ids=input_ids,
      input_mask=input_mask,
      segment_ids=segment_ids,
      label_id=label_id,
Maxim Neumann's avatar
Maxim Neumann committed
1054
      is_real_example=True,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1055
1056
1057
      weight=example.weight,
      int_iden=example.int_iden)

1058
1059
1060
  return feature


Tianqi Liu's avatar
Tianqi Liu committed
1061
1062
1063
1064
1065
1066
def file_based_convert_examples_to_features(examples,
                                            label_list,
                                            max_seq_length,
                                            tokenizer,
                                            output_file,
                                            label_type=None):
1067
1068
  """Convert a set of `InputExample`s to a TFRecord file."""

1069
  tf.io.gfile.makedirs(os.path.dirname(output_file))
1070
1071
  writer = tf.io.TFRecordWriter(output_file)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1072
  for ex_index, example in enumerate(examples):
1073
    if ex_index % 10000 == 0:
1074
      logging.info("Writing example %d of %d", ex_index, len(examples))
1075
1076
1077
1078
1079
1080
1081

    feature = convert_single_example(ex_index, example, label_list,
                                     max_seq_length, tokenizer)

    def create_int_feature(values):
      f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
      return f
Tianqi Liu's avatar
Tianqi Liu committed
1082

Maxim Neumann's avatar
Maxim Neumann committed
1083
1084
1085
    def create_float_feature(values):
      f = tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))
      return f
1086
1087
1088
1089
1090

    features = collections.OrderedDict()
    features["input_ids"] = create_int_feature(feature.input_ids)
    features["input_mask"] = create_int_feature(feature.input_mask)
    features["segment_ids"] = create_int_feature(feature.segment_ids)
Maxim Neumann's avatar
Maxim Neumann committed
1091
1092
    if label_type is not None and label_type == float:
      features["label_ids"] = create_float_feature([feature.label_id])
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1093
    elif feature.label_id is not None:
Maxim Neumann's avatar
Maxim Neumann committed
1094
      features["label_ids"] = create_int_feature([feature.label_id])
1095
1096
    features["is_real_example"] = create_int_feature(
        [int(feature.is_real_example)])
Maxim Neumann's avatar
Maxim Neumann committed
1097
1098
    if feature.weight is not None:
      features["weight"] = create_float_feature([feature.weight])
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1099
1100
    if feature.int_iden is not None:
      features["int_iden"] = create_int_feature([feature.int_iden])
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125

    tf_example = tf.train.Example(features=tf.train.Features(feature=features))
    writer.write(tf_example.SerializeToString())
  writer.close()


def _truncate_seq_pair(tokens_a, tokens_b, max_length):
  """Truncates a sequence pair in place to the maximum length."""

  # This is a simple heuristic which will always truncate the longer sequence
  # one token at a time. This makes more sense than truncating an equal percent
  # of tokens from each, since if one sequence is very short then each token
  # that's truncated likely contains more information than a longer sequence.
  while True:
    total_length = len(tokens_a) + len(tokens_b)
    if total_length <= max_length:
      break
    if len(tokens_a) > len(tokens_b):
      tokens_a.pop()
    else:
      tokens_b.pop()


def generate_tf_record_from_data_file(processor,
                                      data_dir,
1126
                                      tokenizer,
1127
1128
                                      train_data_output_path=None,
                                      eval_data_output_path=None,
Tianqi Liu's avatar
Tianqi Liu committed
1129
                                      test_data_output_path=None,
1130
                                      max_seq_length=128):
1131
1132
1133
1134
1135
  """Generates and saves training data into a tf record file.

  Arguments:
      processor: Input processor object to be used for generating data. Subclass
        of `DataProcessor`.
1136
      data_dir: Directory that contains train/eval/test data to process.
1137
      tokenizer: The tokenizer to be applied on the data.
1138
1139
1140
1141
      train_data_output_path: Output to which processed tf record for training
        will be saved.
      eval_data_output_path: Output to which processed tf record for evaluation
        will be saved.
Tianqi Liu's avatar
Tianqi Liu committed
1142
      test_data_output_path: Output to which processed tf record for testing
Tianqi Liu's avatar
Tianqi Liu committed
1143
1144
        will be saved. Must be a pattern template with {} if processor has
        language specific test data.
1145
1146
1147
1148
1149
1150
1151
1152
1153
      max_seq_length: Maximum sequence length of the to be generated
        training/eval data.

  Returns:
      A dictionary containing input meta data.
  """
  assert train_data_output_path or eval_data_output_path

  label_list = processor.get_labels()
Maxim Neumann's avatar
Maxim Neumann committed
1154
1155
  label_type = getattr(processor, "label_type", None)
  is_regression = getattr(processor, "is_regression", False)
Maxim Neumann's avatar
Maxim Neumann committed
1156
  has_sample_weights = getattr(processor, "weight_key", False)
1157
  assert train_data_output_path
Maxim Neumann's avatar
Maxim Neumann committed
1158

1159
1160
1161
  train_input_data_examples = processor.get_train_examples(data_dir)
  file_based_convert_examples_to_features(train_input_data_examples, label_list,
                                          max_seq_length, tokenizer,
Tianqi Liu's avatar
Tianqi Liu committed
1162
                                          train_data_output_path, label_type)
1163
1164
1165
1166
1167
1168
  num_training_data = len(train_input_data_examples)

  if eval_data_output_path:
    eval_input_data_examples = processor.get_dev_examples(data_dir)
    file_based_convert_examples_to_features(eval_input_data_examples,
                                            label_list, max_seq_length,
Maxim Neumann's avatar
Maxim Neumann committed
1169
1170
                                            tokenizer, eval_data_output_path,
                                            label_type)
1171

1172
1173
1174
1175
1176
1177
  meta_data = {
      "processor_type": processor.get_processor_name(),
      "train_data_size": num_training_data,
      "max_seq_length": max_seq_length,
  }

Tianqi Liu's avatar
Tianqi Liu committed
1178
1179
1180
1181
1182
  if test_data_output_path:
    test_input_data_examples = processor.get_test_examples(data_dir)
    if isinstance(test_input_data_examples, dict):
      for language, examples in test_input_data_examples.items():
        file_based_convert_examples_to_features(
Tianqi Liu's avatar
Tianqi Liu committed
1183
1184
            examples, label_list, max_seq_length, tokenizer,
            test_data_output_path.format(language), label_type)
1185
        meta_data["test_{}_data_size".format(language)] = len(examples)
Tianqi Liu's avatar
Tianqi Liu committed
1186
1187
1188
    else:
      file_based_convert_examples_to_features(test_input_data_examples,
                                              label_list, max_seq_length,
Maxim Neumann's avatar
Maxim Neumann committed
1189
1190
                                              tokenizer, test_data_output_path,
                                              label_type)
1191
      meta_data["test_data_size"] = len(test_input_data_examples)
Tianqi Liu's avatar
Tianqi Liu committed
1192

Maxim Neumann's avatar
Maxim Neumann committed
1193
1194
1195
1196
1197
1198
  if is_regression:
    meta_data["task_type"] = "bert_regression"
    meta_data["label_type"] = {int: "int", float: "float"}[label_type]
  else:
    meta_data["task_type"] = "bert_classification"
    meta_data["num_labels"] = len(processor.get_labels())
Maxim Neumann's avatar
Maxim Neumann committed
1199
1200
  if has_sample_weights:
    meta_data["has_sample_weights"] = True
1201
1202
1203
1204
1205

  if eval_data_output_path:
    meta_data["eval_data_size"] = len(eval_input_data_examples)

  return meta_data