training_utils.py 11.7 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Hongkun Yu's avatar
Hongkun Yu committed
15
"""XLNet training utils."""
Hongkun Yu's avatar
Hongkun Yu committed
16
17
18
19
20
21
22
23
24
25
26
27
28
from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function

import os
import re

from absl import logging

# pytype: disable=attribute-error
# pylint: disable=g-bare-generic,unused-import
import tensorflow as tf
29
30
from typing import Any, Callable, Dict, Text, Optional

31
from official.modeling import model_training_utils
Hongkun Yu's avatar
Hongkun Yu committed
32
from official.nlp.xlnet import data_utils
33
from official.nlp.xlnet import xlnet_modeling as modeling
Hongkun Yu's avatar
Hongkun Yu committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

_MIN_SUMMARY_STEPS = 10


def _save_checkpoint(checkpoint, model_dir, checkpoint_prefix):
  """Saves model to with provided checkpoint prefix."""

  checkpoint_path = os.path.join(model_dir, checkpoint_prefix)
  saved_path = checkpoint.save(checkpoint_path)
  logging.info("Saving model as TF checkpoint: %s", saved_path)
  return


def _float_metric_value(metric):
  """Gets the value of a float-value keras metric."""
  return metric.result().numpy().astype(float)


def train(
    strategy: tf.distribute.Strategy,
    model_fn: Callable,
    input_meta_data: Dict,
    train_input_fn: Callable,
    total_training_steps: int,
    steps_per_loop: int,
    optimizer: tf.keras.optimizers.Optimizer,
    learning_rate_fn: tf.keras.optimizers.schedules.LearningRateSchedule,
    eval_fn: Optional[Callable[[tf.keras.Model, int, tf.summary.SummaryWriter],
                               Any]] = None,
    metric_fn: Optional[Callable[[], tf.keras.metrics.Metric]] = None,
    init_checkpoint: Optional[Text] = None,
65
    init_from_transformerxl: Optional[bool] = False,
Hongkun Yu's avatar
Hongkun Yu committed
66
    model_dir: Optional[Text] = None,
Hongkun Yu's avatar
Hongkun Yu committed
67
68
    save_steps: Optional[int] = None,
    run_eagerly: Optional[bool] = False):
Hongkun Yu's avatar
Hongkun Yu committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
  """Runs customized training.

  Args:
      strategy: Distribution strategy on which to run low level training loop.
      model_fn: The function returns a keras.Model.
      input_meta_data: A dictionary of params: `mem_len`, `lr_layer_decay_rate`,
        `n_layer`, `batch_size_per_core` and `d_model`.
      train_input_fn: Function returns a tf.data.Dataset used for training.
      total_training_steps: Number of steps to train in total.
      steps_per_loop: Number of steps per graph-mode loop. In order to reduce
        communication in eager context, training logs are printed every
        steps_per_loop.
      optimizer: The optimizer for model.
      learning_rate_fn: the learning rate schedule.
      eval_fn: A callback of evaluation function, that takes a keras.Model,
        current step and evaluation summary writer.
      metric_fn: A metrics function returns a Keras Metric object to record
        evaluation result using evaluation dataset or with training dataset
        after every epoch.
      init_checkpoint: Optional checkpoint to load to `sub_model` returned by
        `model_fn`.
90
91
      init_from_transformerxl: Whether to load to `transformerxl_model` of
        `model_fn`.
Hongkun Yu's avatar
Hongkun Yu committed
92
93
      model_dir: The directory of model (checkpoints, summaries).
      save_steps: The frequency to save checkpoints. Every save_steps, we save a
94
95
        model checkpoint. Model checkpoint will be saved and evaluation will be
        conducted if evaluation dataset is provided.
Hongkun Yu's avatar
Hongkun Yu committed
96
      run_eagerly: Whether to run training eagerly.
Hongkun Yu's avatar
Hongkun Yu committed
97
98
99
100
101
102
103

  Returns:
      Last training step logits if training happens, otherwise returns None.
  Raises:
    TypeError: if model directory is not specified.
  """
  required_arguments = [
104
105
      train_input_fn, total_training_steps, steps_per_loop, optimizer,
      learning_rate_fn, save_steps
Hongkun Yu's avatar
Hongkun Yu committed
106
107
  ]
  if [arg for arg in required_arguments if arg is None]:
Hongkun Yu's avatar
Hongkun Yu committed
108
    raise ValueError("`train_input_fn`, `total_training_steps`, "
109
                     "`steps_per_loop`, `optimizer`, `save_steps` and "
Hongkun Yu's avatar
Hongkun Yu committed
110
                     "`learning_rate_fn` are required parameters.")
Hongkun Yu's avatar
Hongkun Yu committed
111
112
  if not model_dir:
    raise TypeError("Model directory must be specified.")
Hongkun Yu's avatar
Hongkun Yu committed
113
  train_iterator = data_utils.get_input_iterator(train_input_fn, strategy)
Hongkun Yu's avatar
Hongkun Yu committed
114
115
  if not tf.io.gfile.exists(model_dir):
    tf.io.gfile.mkdir(model_dir)
Hongkun Yu's avatar
Hongkun Yu committed
116
117
118
119
120
121
  # Create summary writers
  summary_dir = os.path.join(model_dir, "summaries")
  if not tf.io.gfile.exists(summary_dir):
    tf.io.gfile.mkdir(summary_dir)
  train_summary_writer = None
  eval_summary_writer = None
Hongkun Yu's avatar
Hongkun Yu committed
122
  if eval_fn:
Hongkun Yu's avatar
Hongkun Yu committed
123
    eval_summary_writer = tf.summary.create_file_writer(
Hongkun Yu's avatar
Hongkun Yu committed
124
        os.path.join(summary_dir, "eval"))
Hongkun Yu's avatar
Hongkun Yu committed
125
126
127
128
  if steps_per_loop >= _MIN_SUMMARY_STEPS:
    # Only writes summary when the stats are collected sufficiently over
    # enough steps.
    train_summary_writer = tf.summary.create_file_writer(
Hongkun Yu's avatar
Hongkun Yu committed
129
        os.path.join(summary_dir, "train"))
Hongkun Yu's avatar
Hongkun Yu committed
130
131
132
133
134
135

  with strategy.scope():
    model = model_fn()

    if init_checkpoint:
      logging.info("restore from %s", init_checkpoint)
136
137
138
139
140
      if init_from_transformerxl:
        checkpoint = tf.train.Checkpoint(
            transformer_xl=model.transformerxl_model)
      else:
        checkpoint = tf.train.Checkpoint(model=model)
Hongkun Yu's avatar
Hongkun Yu committed
141
      checkpoint.restore(init_checkpoint)
Hongkun Yu's avatar
Hongkun Yu committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

    model.optimizer = optimizer

    if not hasattr(model, "optimizer"):
      raise ValueError("User should set optimizer attribute to model.")

    train_loss_metric = tf.keras.metrics.Mean("training_loss", dtype=tf.float32)
    train_metric = None
    if metric_fn:
      train_metric = metric_fn()

    def _replicated_step(inputs, mem=None):
      """Replicated training step."""

      inputs["mems"] = mem
      with tf.GradientTape() as tape:
        mem, logits = model(inputs, training=True)
        loss = model.losses
        train_loss_metric.update_state(loss)
        if train_metric:
          train_metric.update_state(inputs["label_ids"], logits)
        scaled_loss = loss[0] * 1.0 / float(strategy.num_replicas_in_sync)

      # Collects training variables.
      tvars = model.trainable_variables
      grads = tape.gradient(scaled_loss, tvars)
      clipped, _ = tf.clip_by_global_norm(grads, clip_norm=1.0)

      if input_meta_data["lr_layer_decay_rate"] != 1.0:
        n_layer = 0
        for i in range(len(clipped)):
          m = re.search(r"model/transformer/layer_(\d+?)/", tvars[i].name)
          if not m:
            continue
          n_layer = max(n_layer, int(m.group(1)) + 1)

        for i in range(len(clipped)):
          for l in range(n_layer):
            if "model/transformer/layer_{}/".format(l) in tvars[i].name:
              abs_rate = input_meta_data["lr_layer_decay_rate"]**(
                  n_layer - 1 - l)
              clipped[i] *= abs_rate
              logging.info("Apply mult {:.4f} to layer-{} grad of {}".format(
                  abs_rate, l, tvars[i].name))
              break

      optimizer.apply_gradients(zip(clipped, tvars))
      if input_meta_data["mem_len"] > 0:
Hongkun Yu's avatar
Hongkun Yu committed
190
        return mem
Hongkun Yu's avatar
Hongkun Yu committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

    def train_steps(iterator, steps):
      """Performs distributed training steps in a loop.

      Args:
        iterator: the distributed iterator of training datasets.
        steps: an tf.int32 integer tensor to specify number of steps to run
          inside host training loop.

      Raises:
        ValueError: Any of the arguments or tensor shapes are invalid.

      Returns:
        logits: logits computed.
      """
      if not isinstance(steps, tf.Tensor):
        raise ValueError("steps should be an Tensor. Python object may cause "
                         "retracing.")

      def cache_fn():
        """Initializes memory tensor used in XLNet pretraining."""
        mems = []
        if input_meta_data["mem_len"] > 0:
          for _ in range(input_meta_data["n_layer"]):
            zeros = tf.zeros([
                input_meta_data["mem_len"],
                input_meta_data["batch_size_per_core"],
                input_meta_data["d_model"]
            ],
                             dtype=tf.float32)
            mems.append(zeros)
        return mems

      if input_meta_data["mem_len"] > 0:
        mem = strategy.experimental_run_v2(cache_fn)
        for _ in tf.range(steps):
Hongkun Yu's avatar
Hongkun Yu committed
227
          mem = strategy.experimental_run_v2(
Hongkun Yu's avatar
Hongkun Yu committed
228
229
230
231
232
233
              _replicated_step, args=(
                  next(iterator),
                  mem,
              ))
      else:
        for _ in tf.range(steps):
Hongkun Yu's avatar
Hongkun Yu committed
234
235
236
237
          strategy.experimental_run_v2(_replicated_step, args=(next(iterator),))

    if not run_eagerly:
      train_steps = tf.function(train_steps)
Hongkun Yu's avatar
Hongkun Yu committed
238
239
240
241
242
243
244
245
246
247
248
249

    logging.info("Start training...")
    checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
    latest_checkpoint_file = tf.train.latest_checkpoint(model_dir)
    if latest_checkpoint_file:
      logging.info("Checkpoint file %s found and restoring from checkpoint",
                   latest_checkpoint_file)
      checkpoint.restore(latest_checkpoint_file)
      logging.info("Loading from checkpoint file completed")

    current_step = optimizer.iterations.numpy()
    checkpoint_name = "xlnet_step_{step}.ckpt"
Hongkun Yu's avatar
Hongkun Yu committed
250

Hongkun Yu's avatar
Hongkun Yu committed
251
252
253
254
255
    while current_step < total_training_steps:
      train_loss_metric.reset_states()
      if train_metric:
        train_metric.reset_states()

256
257
      steps = model_training_utils.steps_to_run(current_step, save_steps,
                                                steps_per_loop)
Hongkun Yu's avatar
Hongkun Yu committed
258
      train_steps(train_iterator, tf.convert_to_tensor(steps, dtype=tf.int32))
Hongkun Yu's avatar
Hongkun Yu committed
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
      current_step += steps
      train_loss = _float_metric_value(train_loss_metric)
      log_stream = "Train step: %d/%d  /  lr = %.9f  /  loss = %.7f" % (
          current_step, total_training_steps, learning_rate_fn(current_step),
          train_loss)
      if train_metric:
        log_stream += "  /  %s = %f" % (train_metric.name,
                                        _float_metric_value(train_metric))
      logging.info(log_stream)
      if train_summary_writer:
        with train_summary_writer.as_default():
          tf.summary.scalar(
              "learning_rate",
              learning_rate_fn(current_step),
              step=current_step)
          tf.summary.scalar(
              train_loss_metric.name, train_loss, step=current_step)
          if train_metric:
            tf.summary.scalar(
                train_metric.name,
                _float_metric_value(train_metric),
                step=current_step)
          train_summary_writer.flush()
282
283
284
      if model_dir and current_step % save_steps == 0:
        _save_checkpoint(checkpoint, model_dir,
                         checkpoint_name.format(step=current_step))
Hongkun Yu's avatar
Hongkun Yu committed
285

Hongkun Yu's avatar
Hongkun Yu committed
286
      if eval_fn and current_step % save_steps == 0:
Hongkun Yu's avatar
Hongkun Yu committed
287
288
289
290
291
292
293

        logging.info("Running evaluation after step: %s.", current_step)

        eval_fn(model, current_step, eval_summary_writer)
    if model_dir:
      _save_checkpoint(checkpoint, model_dir,
                       checkpoint_name.format(step=current_step))
Hongkun Yu's avatar
Hongkun Yu committed
294
    if eval_fn:
Hongkun Yu's avatar
Hongkun Yu committed
295
      logging.info("Running final evaluation after training is complete.")
296
297
298
299
300
301
302
303
      eval_metric = eval_fn(model, current_step, eval_summary_writer)

    training_summary = {
        "total_training_steps": total_training_steps,
        "train_loss": _float_metric_value(train_loss_metric),
    }
    if train_metric:
      training_summary["last_train_metrics"] = _float_metric_value(train_metric)
Hongkun Yu's avatar
Hongkun Yu committed
304
    if eval_fn:
305
306
307
      # eval_metric is supposed to be a float.
      training_summary["eval_metrics"] = eval_metric

Hongkun Yu's avatar
Hongkun Yu committed
308
    model_training_utils.write_txt_summary(training_summary, summary_dir)
Hongkun Yu's avatar
Hongkun Yu committed
309

Hongkun Yu's avatar
Hongkun Yu committed
310
    return model