run_squad.py 11.8 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""XLNet SQUAD finetuning runner in tf2.0."""

from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function

import functools
import json
import os
import pickle

from absl import app
from absl import flags
from absl import logging

import tensorflow as tf
# pylint: disable=unused-import
Hongkun Yu's avatar
Hongkun Yu committed
33
import sentencepiece as spm
Hongkun Yu's avatar
Hongkun Yu committed
34
35
36
37
38
from official.nlp.xlnet import common_flags
from official.nlp.xlnet import data_utils
from official.nlp.xlnet import optimization
from official.nlp.xlnet import squad_utils
from official.nlp.xlnet import training_utils
39
40
from official.nlp.xlnet import xlnet_config
from official.nlp.xlnet import xlnet_modeling as modeling
Hongkun Yu's avatar
Hongkun Yu committed
41
from official.utils.misc import tpu_lib
Hongkun Yu's avatar
Hongkun Yu committed
42
43
44
45
46
47
48
49
50
51
52
53
54

flags.DEFINE_string(
    "test_feature_path", default=None, help="Path to feature of test set.")
flags.DEFINE_integer("query_len", default=64, help="Max query length.")
flags.DEFINE_integer("start_n_top", default=5, help="Beam size for span start.")
flags.DEFINE_integer("end_n_top", default=5, help="Beam size for span end.")
flags.DEFINE_string(
    "predict_dir", default=None, help="Path to write predictions.")
flags.DEFINE_string(
    "predict_file", default=None, help="Path to json file of test set.")
flags.DEFINE_integer(
    "n_best_size", default=5, help="n best size for predictions.")
flags.DEFINE_integer("max_answer_length", default=64, help="Max answer length.")
Hongkun Yu's avatar
Hongkun Yu committed
55
56
57
58
59
60
# Data preprocessing config
flags.DEFINE_string(
    "spiece_model_file", default=None, help="Sentence Piece model path.")
flags.DEFINE_integer("max_seq_length", default=512, help="Max sequence length.")
flags.DEFINE_integer("max_query_length", default=64, help="Max query length.")
flags.DEFINE_integer("doc_stride", default=128, help="Doc stride.")
Hongkun Yu's avatar
Hongkun Yu committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

FLAGS = flags.FLAGS


class InputFeatures(object):
  """A single set of features of data."""

  def __init__(self,
               unique_id,
               example_index,
               doc_span_index,
               tok_start_to_orig_index,
               tok_end_to_orig_index,
               token_is_max_context,
               input_ids,
               input_mask,
               p_mask,
               segment_ids,
               paragraph_len,
               cls_index,
               start_position=None,
               end_position=None,
               is_impossible=None):
    self.unique_id = unique_id
    self.example_index = example_index
    self.doc_span_index = doc_span_index
    self.tok_start_to_orig_index = tok_start_to_orig_index
    self.tok_end_to_orig_index = tok_end_to_orig_index
    self.token_is_max_context = token_is_max_context
    self.input_ids = input_ids
    self.input_mask = input_mask
    self.p_mask = p_mask
    self.segment_ids = segment_ids
    self.paragraph_len = paragraph_len
    self.cls_index = cls_index
    self.start_position = start_position
    self.end_position = end_position
    self.is_impossible = is_impossible


# pylint: disable=unused-argument
Hongkun Yu's avatar
Hongkun Yu committed
102
103
104
def run_evaluation(strategy, test_input_fn, eval_examples, eval_features,
                   original_data, eval_steps, input_meta_data, model,
                   current_step, eval_summary_writer):
Hongkun Yu's avatar
Hongkun Yu committed
105
106
107
108
109
  """Run evaluation for SQUAD task.

  Args:
    strategy: distribution strategy.
    test_input_fn: input function for evaluation data.
Hongkun Yu's avatar
Hongkun Yu committed
110
111
112
    eval_examples: tf.Examples of the evaluation set.
    eval_features: Feature objects of the evaluation set.
    original_data: The original json data for the evaluation set.
Hongkun Yu's avatar
Hongkun Yu committed
113
114
115
    eval_steps: total number of evaluation steps.
    input_meta_data: input meta data.
    model: keras model object.
Hongkun Yu's avatar
Hongkun Yu committed
116
    current_step: current training step.
Hongkun Yu's avatar
Hongkun Yu committed
117
    eval_summary_writer: summary writer used to record evaluation metrics.
Hongkun Yu's avatar
Hongkun Yu committed
118

119
120
  Returns:
    A float metric, F1 score.
Hongkun Yu's avatar
Hongkun Yu committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
  """

  def _test_step_fn(inputs):
    """Replicated validation step."""

    inputs["mems"] = None
    res = model(inputs, training=False)
    return res, inputs["unique_ids"]

  @tf.function
  def _run_evaluation(test_iterator):
    """Runs validation steps."""
    res, unique_ids = strategy.experimental_run_v2(
        _test_step_fn, args=(next(test_iterator),))
    return res, unique_ids

Hongkun Yu's avatar
Hongkun Yu committed
137
  test_iterator = data_utils.get_input_iterator(test_input_fn, strategy)
Hongkun Yu's avatar
Hongkun Yu committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
  cur_results = []
  for _ in range(eval_steps):
    results, unique_ids = _run_evaluation(test_iterator)
    unique_ids = strategy.experimental_local_results(unique_ids)

    for result_key in results:
      results[result_key] = (
          strategy.experimental_local_results(results[result_key]))
    for core_i in range(strategy.num_replicas_in_sync):
      bsz = int(input_meta_data["test_batch_size"] /
                strategy.num_replicas_in_sync)
      for j in range(bsz):
        result = {}
        for result_key in results:
          result[result_key] = results[result_key][core_i].numpy()[j]
        result["unique_ids"] = unique_ids[core_i].numpy()[j]
        # We appended a fake example into dev set to make data size can be
        # divided by test_batch_size. Ignores this fake example during
        # evaluation.
        if result["unique_ids"] == 1000012047:
          continue
        unique_id = int(result["unique_ids"])

        start_top_log_probs = ([
            float(x) for x in result["start_top_log_probs"].flat
        ])
        start_top_index = [int(x) for x in result["start_top_index"].flat]
        end_top_log_probs = ([
            float(x) for x in result["end_top_log_probs"].flat
        ])
        end_top_index = [int(x) for x in result["end_top_index"].flat]

        cls_logits = float(result["cls_logits"].flat[0])
        cur_results.append(
            squad_utils.RawResult(
                unique_id=unique_id,
                start_top_log_probs=start_top_log_probs,
                start_top_index=start_top_index,
                end_top_log_probs=end_top_log_probs,
                end_top_index=end_top_index,
                cls_logits=cls_logits))
        if len(cur_results) % 1000 == 0:
          logging.info("Processing example: %d", len(cur_results))

  output_prediction_file = os.path.join(input_meta_data["predict_dir"],
                                        "predictions.json")
  output_nbest_file = os.path.join(input_meta_data["predict_dir"],
                                   "nbest_predictions.json")
  output_null_log_odds_file = os.path.join(input_meta_data["predict_dir"],
                                           "null_odds.json")

189
  results = squad_utils.write_predictions(
Hongkun Yu's avatar
Hongkun Yu committed
190
191
192
193
      eval_examples, eval_features, cur_results, input_meta_data["n_best_size"],
      input_meta_data["max_answer_length"], output_prediction_file,
      output_nbest_file, output_null_log_odds_file, original_data,
      input_meta_data["start_n_top"], input_meta_data["end_n_top"])
Hongkun Yu's avatar
Hongkun Yu committed
194

195
  # Log current results.
Hongkun Yu's avatar
Hongkun Yu committed
196
  log_str = "Result | "
197
  for key, val in results.items():
Hongkun Yu's avatar
Hongkun Yu committed
198
199
    log_str += "{} {} | ".format(key, val)
  logging.info(log_str)
Hongkun Yu's avatar
Hongkun Yu committed
200
201
202
203
  with eval_summary_writer.as_default():
    tf.summary.scalar("best_f1", results["best_f1"], step=current_step)
    tf.summary.scalar("best_exact", results["best_exact"], step=current_step)
    eval_summary_writer.flush()
204
  return results["best_f1"]
Hongkun Yu's avatar
Hongkun Yu committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263


def get_qaxlnet_model(model_config, run_config, start_n_top, end_n_top):
  model = modeling.QAXLNetModel(
      model_config,
      run_config,
      start_n_top=start_n_top,
      end_n_top=end_n_top,
      name="model")
  return model


def main(unused_argv):
  del unused_argv
  if FLAGS.strategy_type == "mirror":
    strategy = tf.distribute.MirroredStrategy()
  elif FLAGS.strategy_type == "tpu":
    cluster_resolver = tpu_lib.tpu_initialize(FLAGS.tpu)
    strategy = tf.distribute.experimental.TPUStrategy(cluster_resolver)
  else:
    raise ValueError("The distribution strategy type is not supported: %s" %
                     FLAGS.strategy_type)
  if strategy:
    logging.info("***** Number of cores used : %d",
                 strategy.num_replicas_in_sync)
  train_input_fn = functools.partial(data_utils.get_squad_input_data,
                                     FLAGS.train_batch_size, FLAGS.seq_len,
                                     FLAGS.query_len, strategy, True,
                                     FLAGS.train_tfrecord_path)

  test_input_fn = functools.partial(data_utils.get_squad_input_data,
                                    FLAGS.test_batch_size, FLAGS.seq_len,
                                    FLAGS.query_len, strategy, False,
                                    FLAGS.test_tfrecord_path)

  total_training_steps = FLAGS.train_steps
  steps_per_loop = FLAGS.iterations
  eval_steps = int(FLAGS.test_data_size / FLAGS.test_batch_size)

  optimizer, learning_rate_fn = optimization.create_optimizer(
      FLAGS.learning_rate,
      total_training_steps,
      FLAGS.warmup_steps,
      adam_epsilon=FLAGS.adam_epsilon)
  model_config = xlnet_config.XLNetConfig(FLAGS)
  run_config = xlnet_config.create_run_config(True, False, FLAGS)
  input_meta_data = {}
  input_meta_data["start_n_top"] = FLAGS.start_n_top
  input_meta_data["end_n_top"] = FLAGS.end_n_top
  input_meta_data["lr_layer_decay_rate"] = FLAGS.lr_layer_decay_rate
  input_meta_data["predict_dir"] = FLAGS.predict_dir
  input_meta_data["n_best_size"] = FLAGS.n_best_size
  input_meta_data["max_answer_length"] = FLAGS.max_answer_length
  input_meta_data["test_batch_size"] = FLAGS.test_batch_size
  input_meta_data["batch_size_per_core"] = int(FLAGS.train_batch_size /
                                               strategy.num_replicas_in_sync)
  input_meta_data["mem_len"] = FLAGS.mem_len
  model_fn = functools.partial(get_qaxlnet_model, model_config, run_config,
                               FLAGS.start_n_top, FLAGS.end_n_top)
Hongkun Yu's avatar
Hongkun Yu committed
264
265
266
267
268
269
270
271
272
  eval_examples = squad_utils.read_squad_examples(
      FLAGS.predict_file, is_training=False)
  if FLAGS.test_feature_path:
    logging.info("start reading pickle file...")
    with tf.io.gfile.GFile(FLAGS.test_feature_path, "rb") as f:
      eval_features = pickle.load(f)
    logging.info("finishing reading pickle file...")
  else:
    sp_model = spm.SentencePieceProcessor()
Hongkun Yu's avatar
Hongkun Yu committed
273
274
    sp_model.LoadFromSerializedProto(
        tf.io.gfile.GFile(FLAGS.spiece_model_file, "rb").read())
Hongkun Yu's avatar
Hongkun Yu committed
275
276
277
278
279
280
281
    spm_basename = os.path.basename(FLAGS.spiece_model_file)
    eval_features = squad_utils.create_eval_data(
        spm_basename, sp_model, eval_examples, FLAGS.max_seq_length,
        FLAGS.max_query_length, FLAGS.doc_stride, FLAGS.uncased)

  with tf.io.gfile.GFile(FLAGS.predict_file) as f:
    original_data = json.load(f)["data"]
Hongkun Yu's avatar
Hongkun Yu committed
282
  eval_fn = functools.partial(run_evaluation, strategy, test_input_fn,
Hongkun Yu's avatar
Hongkun Yu committed
283
                              eval_examples, eval_features, original_data,
Hongkun Yu's avatar
Hongkun Yu committed
284
285
                              eval_steps, input_meta_data)

286
287
288
289
290
291
292
293
  training_utils.train(
      strategy=strategy,
      model_fn=model_fn,
      input_meta_data=input_meta_data,
      eval_fn=eval_fn,
      metric_fn=None,
      train_input_fn=train_input_fn,
      init_checkpoint=FLAGS.init_checkpoint,
294
      init_from_transformerxl=FLAGS.init_from_transformerxl,
295
296
297
298
      total_training_steps=total_training_steps,
      steps_per_loop=steps_per_loop,
      optimizer=optimizer,
      learning_rate_fn=learning_rate_fn,
Hongkun Yu's avatar
Hongkun Yu committed
299
300
      model_dir=FLAGS.model_dir,
      save_steps=FLAGS.save_steps)
Hongkun Yu's avatar
Hongkun Yu committed
301
302
303
304
305


if __name__ == "__main__":
  assert tf.version.VERSION.startswith('2.')
  app.run(main)