object_detection_tutorial.ipynb 8.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Object Detection Demo\n",
    "Welcome to the object detection inference walkthrough!  This notebook will walk you step by step through the process of using a pre-trained model to detect objects in an image."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Imports"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true,
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import os\n",
29
    "import six.moves.urllib as urllib\n",
30
    "import sys\n",
31
    "import tarfile\n",
32
    "import tensorflow as tf\n",
33
    "import zipfile\n",
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    "\n",
    "from collections import defaultdict\n",
    "from io import StringIO\n",
    "from matplotlib import pyplot as plt\n",
    "from PIL import Image"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Env setup"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "# This is needed to display the images.\n",
    "%matplotlib inline\n",
    "\n",
    "# This is needed since the notebook is stored in the object_detection folder.\n",
    "sys.path.append(\"..\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Object detection imports\n",
    "Here are the imports from the object detection module."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "from utils import label_map_util\n",
    "\n",
    "from utils import visualization_utils as vis_util"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Model preparation "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
95
96
    "## Variables\n",
    "\n",
97
98
99
    "Any model exported using the `export_inference_graph.py` tool can be loaded here simply by changing `PATH_TO_CKPT` to point to a new .pb file.  \n",
    "\n",
    "By default we use an \"SSD with Mobilenet\" model here. See the [detection model zoo](g3doc/detection_model_zoo.md) for a list of other models that can be run out-of-the-box with varying speeds and accuracies."
100
101
102
103
104
105
106
107
108
109
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
110
111
112
113
114
    "# What model to download.\n",
    "MODEL_NAME = 'ssd_mobilenet_v1_coco_11_06_2017'\n",
    "MODEL_FILE = MODEL_NAME + '.tar.gz'\n",
    "DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'\n",
    "\n",
115
    "# Path to frozen detection graph. This is the actual model that is used for the object detection.\n",
116
    "PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'\n",
117
118
119
120
121
122
123
124
125
126
127
    "\n",
    "# List of the strings that is used to add correct label for each box.\n",
    "PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')\n",
    "\n",
    "NUM_CLASSES = 90"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
128
    "## Download Model"
129
130
131
132
133
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "opener = urllib.request.URLopener()\n",
    "opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)\n",
    "tar_file = tarfile.open(MODEL_FILE)\n",
    "for file in tar_file.getmembers():\n",
    "    file_name = os.path.basename(file.name)\n",
    "    if 'frozen_inference_graph.pb' in file_name:\n",
    "        tar_file.extract(file, os.getcwd())"
   ]
  },
  {
   "cell_type": "markdown",
150
   "metadata": {},
151
152
153
154
155
156
157
158
159
160
   "source": [
    "## Load a (frozen) Tensorflow model into memory."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
   "outputs": [],
   "source": [
    "detection_graph = tf.Graph()\n",
    "with detection_graph.as_default():\n",
    "    od_graph_def = tf.GraphDef()\n",
    "    with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:\n",
    "        serialized_graph = fid.read()\n",
    "        od_graph_def.ParseFromString(serialized_graph)\n",
    "        tf.import_graph_def(od_graph_def, name='')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Loading label map\n",
    "Label maps map indices to category names, so that when our convolution network predicts `5`, we know that this corresponds to `airplane`.  Here we use internal utility functions, but anything that returns a dictionary mapping integers to appropriate string labels would be fine"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
183
184
185
   "metadata": {
    "collapsed": true
   },
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
   "outputs": [],
   "source": [
    "label_map = label_map_util.load_labelmap(PATH_TO_LABELS)\n",
    "categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)\n",
    "category_index = label_map_util.create_category_index(categories)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Helper code"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "def load_image_into_numpy_array(image):\n",
    "  (im_width, im_height) = image.size\n",
    "  return np.array(image.getdata()).reshape(\n",
    "      (im_height, im_width, 3)).astype(np.uint8)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Detection"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "# For the sake of simplicity we will use only 2 images:\n",
    "# image1.jpg\n",
    "# image2.jpg\n",
    "# If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS.\n",
    "PATH_TO_TEST_IMAGES_DIR = 'test_images'\n",
    "TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(1, 3) ]\n",
    "\n",
    "# Size, in inches, of the output images.\n",
    "IMAGE_SIZE = (12, 8)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "with detection_graph.as_default():\n",
    "  with tf.Session(graph=detection_graph) as sess:\n",
    "    for image_path in TEST_IMAGE_PATHS:\n",
    "      image = Image.open(image_path)\n",
    "      # the array based representation of the image will be used later in order to prepare the\n",
    "      # result image with boxes and labels on it.\n",
    "      image_np = load_image_into_numpy_array(image)\n",
    "      # Expand dimensions since the model expects images to have shape: [1, None, None, 3]\n",
    "      image_np_expanded = np.expand_dims(image_np, axis=0)\n",
    "      image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')\n",
    "      # Each box represents a part of the image where a particular object was detected.\n",
    "      boxes = detection_graph.get_tensor_by_name('detection_boxes:0')\n",
    "      # Each score represent how level of confidence for each of the objects.\n",
    "      # Score is shown on the result image, together with the class label.\n",
    "      scores = detection_graph.get_tensor_by_name('detection_scores:0')\n",
    "      classes = detection_graph.get_tensor_by_name('detection_classes:0')\n",
    "      num_detections = detection_graph.get_tensor_by_name('num_detections:0')\n",
    "      # Actual detection.\n",
    "      (boxes, scores, classes, num_detections) = sess.run(\n",
    "          [boxes, scores, classes, num_detections],\n",
    "          feed_dict={image_tensor: image_np_expanded})\n",
    "      # Visualization of the results of a detection.\n",
    "      vis_util.visualize_boxes_and_labels_on_image_array(\n",
    "          image_np,\n",
    "          np.squeeze(boxes),\n",
    "          np.squeeze(classes).astype(np.int32),\n",
    "          np.squeeze(scores),\n",
    "          category_index,\n",
276
277
    "          use_normalized_coordinates=True,\n",
    "          line_thickness=8)\n",
278
279
280
    "      plt.figure(figsize=IMAGE_SIZE)\n",
    "      plt.imshow(image_np)"
   ]
281
282
283
284
285
286
287
288
289
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": []
290
291
292
293
  }
 ],
 "metadata": {
  "kernelspec": {
294
   "display_name": "Python 2",
295
   "language": "python",
296
   "name": "python2"
297
298
299
300
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
301
    "version": 2
302
303
304
305
306
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
307
   "pygments_lexer": "ipython2",
308
   "version": "2.7.12"
309
310
311
312
313
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}