model_training_utils.py 19.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""A light weight utilities to train NLP models."""
16
17
18
19
20

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import json
22
import os
23
import tempfile
24
25

from absl import logging
Hongkun Yu's avatar
Hongkun Yu committed
26
import tensorflow as tf
Zongwei Zhou's avatar
Zongwei Zhou committed
27
from official.staging.training import grad_utils
28
from official.utils.misc import distribution_utils
29

30
31
_SUMMARY_TXT = 'training_summary.txt'
_MIN_SUMMARY_STEPS = 10
32

33

34
35
36
37
38
39
40
41
42
def _should_export_checkpoint(strategy):
  return (not strategy) or strategy.extended.should_checkpoint


def _should_export_summary(strategy):
  return (not strategy) or strategy.extended.should_save_summary


def _save_checkpoint(strategy, checkpoint, model_dir, checkpoint_prefix):
43
44
  """Saves model to with provided checkpoint prefix."""

45
46
47
48
49
50
51
52
53
54
55
56
  if _should_export_checkpoint(strategy):
    checkpoint_path = os.path.join(model_dir, checkpoint_prefix)
    saved_path = checkpoint.save(checkpoint_path)
    logging.info('Saving model as TF checkpoint: %s', saved_path)
  else:
    # In multi worker training we need every worker to save checkpoint, because
    # variables can trigger synchronization on read and synchronization needs
    # all workers to participate. To avoid workers overriding each other we save
    # to a temporary directory on non-chief workers.
    tmp_dir = tempfile.mkdtemp()
    checkpoint.save(os.path.join(tmp_dir, 'ckpt'))
    tf.io.gfile.rmtree(tmp_dir)
57
58
59
  return


60
61
62
63
64
def _get_input_iterator(input_fn, strategy):
  """Returns distributed dataset iterator."""
  # When training with TPU pods, datasets needs to be cloned across
  # workers. Since Dataset instance cannot be cloned in eager mode, we instead
  # pass callable that returns a dataset.
Hongkun Yu's avatar
Hongkun Yu committed
65
66
67
68
  if not callable(input_fn):
    raise ValueError('`input_fn` should be a closure that returns a dataset.')
  iterator = iter(
      strategy.experimental_distribute_datasets_from_function(input_fn))
69
70
71
  return iterator


72
73
74
75
76
def _float_metric_value(metric):
  """Gets the value of a float-value keras metric."""
  return metric.result().numpy().astype(float)


77
def steps_to_run(current_step, steps_per_epoch, steps_per_loop):
78
  """Calculates steps to run on device."""
79
80
81
  if steps_per_loop <= 0:
    raise ValueError('steps_per_loop should be positive integer.')
  if steps_per_loop == 1:
82
83
84
85
86
87
88
89
    return steps_per_loop
  remainder_in_epoch = current_step % steps_per_epoch
  if remainder_in_epoch != 0:
    return min(steps_per_epoch - remainder_in_epoch, steps_per_loop)
  else:
    return steps_per_loop


90
def write_txt_summary(training_summary, summary_dir):
91
  """Writes a summary text file to record stats."""
92
  summary_path = os.path.join(summary_dir, _SUMMARY_TXT)
93
94
95
96
97
  with tf.io.gfile.GFile(summary_path, 'wb') as f:
    logging.info('Training Summary: \n%s', str(training_summary))
    f.write(json.dumps(training_summary, indent=4))


98
99
100
101
102
103
104
105
106
107
def run_customized_training_loop(
    # pylint: disable=invalid-name
    _sentinel=None,
    # pylint: enable=invalid-name
    strategy=None,
    model_fn=None,
    loss_fn=None,
    model_dir=None,
    train_input_fn=None,
    steps_per_epoch=None,
108
    steps_per_loop=1,
109
110
111
112
113
    epochs=1,
    eval_input_fn=None,
    eval_steps=None,
    metric_fn=None,
    init_checkpoint=None,
114
    custom_callbacks=None,
Chen Chen's avatar
Chen Chen committed
115
    run_eagerly=False,
Zongwei Zhou's avatar
Zongwei Zhou committed
116
117
118
119
    sub_model_export_name=None,
    explicit_allreduce=False,
    pre_allreduce_callbacks=None,
    post_allreduce_callbacks=None):
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
  """Run BERT pretrain model training using low-level API.

  Arguments:
      _sentinel: Used to prevent positional parameters. Internal, do not use.
      strategy: Distribution strategy on which to run low level training loop.
      model_fn: Function that returns a tuple (model, sub_model). Caller of this
        function should add optimizer to the `model` via calling
        `model.compile()` API or manually setting `model.optimizer` attribute.
        Second element of the returned tuple(sub_model) is an optional sub model
        to be used for initial checkpoint -- if provided.
      loss_fn: Function with signature func(labels, logits) and returns a loss
        tensor.
      model_dir: Model directory used during training for restoring/saving model
        weights.
      train_input_fn: Function that returns a tf.data.Dataset used for training.
135
136
137
138
139
140
      steps_per_epoch: Number of steps to run per epoch. At the end of each
        epoch, model checkpoint will be saved and evaluation will be conducted
        if evaluation dataset is provided.
      steps_per_loop: Number of steps per graph-mode loop. In order to reduce
        communication in eager context, training logs are printed every
        steps_per_loop.
141
142
143
144
145
146
147
148
149
150
      epochs: Number of epochs to train.
      eval_input_fn: Function that returns evaluation dataset. If none,
        evaluation is skipped.
      eval_steps: Number of steps to run evaluation. Required if `eval_input_fn`
        is not none.
      metric_fn: A metrics function that returns a Keras Metric object to record
        evaluation result using evaluation dataset or with training dataset
        after every epoch.
      init_checkpoint: Optional checkpoint to load to `sub_model` returned by
        `model_fn`.
151
      custom_callbacks: A list of Keras Callbacks objects to run during
152
        training. More specifically, `on_batch_begin()`, `on_batch_end()`,
153
        methods are invoked during training.
154
155
      run_eagerly: Whether to run model training in pure eager execution. This
        should be disable for TPUStrategy.
Chen Chen's avatar
Chen Chen committed
156
157
158
159
160
      sub_model_export_name: If not None, will export `sub_model` returned by
        `model_fn` into checkpoint files. The name of intermediate checkpoint
        file is {sub_model_export_name}_step_{step}.ckpt and the last
        checkpint's name is {sub_model_export_name}.ckpt;
        if None, `sub_model` will not be exported as checkpoint.
Zongwei Zhou's avatar
Zongwei Zhou committed
161
162
163
164
165
166
167
168
169
170
      explicit_allreduce: Whether to explicitly perform gradient allreduce,
        instead of relying on implicit allreduce in optimizer.apply_gradients().
        default is False. For now, if training using FP16 mixed precision,
        explicit allreduce will aggregate gradients in FP16 format. For TPU and
        GPU training using FP32, explicit allreduce will aggregate gradients in
        FP32 format.
      pre_allreduce_callbacks: A list of callback functions that takes gradients
        and model variables pairs as input, manipulate them, and returns a new
        gradients and model variables paris. The callback functions will be
        invoked in the list order and before gradients are allreduced.
171
172
173
        With mixed precision training, the pre_allreduce_allbacks will be
        applied on scaled_gradients. Default is no callbacks.
        Only used when explicit_allreduce=True.
Zongwei Zhou's avatar
Zongwei Zhou committed
174
175
176
177
178
179
      post_allreduce_callbacks: A list of callback functions that takes
        gradients and model variables pairs as input, manipulate them, and
        returns a new gradients and model variables paris. The callback
        functions will be invoked in the list order and right before gradients
        are applied to variables for updates. Default is no callbacks. Only used
        when explicit_allreduce=True.
180
181
182
183
184
185
186
187

  Returns:
      Trained model.

  Raises:
      ValueError: (1) When model returned by `model_fn` does not have optimizer
        attribute or when required parameters are set to none. (2) eval args are
        not specified correctly. (3) metric_fn must be a callable if specified.
Chen Chen's avatar
Chen Chen committed
188
189
        (4) sub_model_checkpoint_name is specified, but `sub_model` returned
        by `model_fn` is None.
190
191
192
193
194
195
196
197
198
199
200
  """

  if _sentinel is not None:
    raise ValueError('only call `run_customized_training_loop()` '
                     'with named arguments.')

  required_arguments = [
      strategy, model_fn, loss_fn, model_dir, steps_per_epoch, train_input_fn
  ]
  if [arg for arg in required_arguments if arg is None]:
    raise ValueError('`strategy`, `model_fn`, `loss_fn`, `model_dir`, '
201
202
203
204
205
206
207
208
                     '`steps_per_loop` and `steps_per_epoch` are required '
                     'parameters.')
  if steps_per_loop > steps_per_epoch:
    logging.error(
        'steps_per_loop: %d is specified to be greater than '
        ' steps_per_epoch: %d, we will use steps_per_epoch as'
        ' steps_per_loop.', steps_per_loop, steps_per_epoch)
    steps_per_loop = steps_per_epoch
209
210
  assert tf.executing_eagerly()

211
212
213
  if run_eagerly:
    if isinstance(strategy, tf.distribute.experimental.TPUStrategy):
      raise ValueError(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
214
          'TPUStrategy should not run eagerly as it heavily relies on graph'
215
216
          ' optimization for the distributed system.')

217
218
219
220
221
222
223
224
  if eval_input_fn and (eval_steps is None or metric_fn is None):
    raise ValueError(
        '`eval_step` and `metric_fn` are required when `eval_input_fn ` '
        'is not none.')
  if metric_fn and not callable(metric_fn):
    raise ValueError(
        'if `metric_fn` is specified, metric_fn must be a callable.')

225
  total_training_steps = steps_per_epoch * epochs
226
227
228
229
230
231
232
233
234
  train_iterator = _get_input_iterator(train_input_fn, strategy)

  with distribution_utils.get_strategy_scope(strategy):
    # To correctly place the model weights on accelerators,
    # model and optimizer should be created in scope.
    model, sub_model = model_fn()
    if not hasattr(model, 'optimizer'):
      raise ValueError('User should set optimizer attribute to model '
                       'inside `model_fn`.')
Chen Chen's avatar
Chen Chen committed
235
236
237
238
    if sub_model_export_name and sub_model is None:
      raise ValueError('sub_model_export_name is specified as %s, but '
                       'sub_model is None.' % sub_model_export_name)

239
240
241
242
243
244
245
    optimizer = model.optimizer

    if init_checkpoint:
      logging.info(
          'Checkpoint file %s found and restoring from '
          'initial checkpoint for core model.', init_checkpoint)
      checkpoint = tf.train.Checkpoint(model=sub_model)
Jing Li's avatar
Jing Li committed
246
      checkpoint.restore(init_checkpoint).assert_existing_objects_matched()
247
248
249
250
251
252
253
254
255
256
257
258
259
      logging.info('Loading from checkpoint file completed')

    train_loss_metric = tf.keras.metrics.Mean(
        'training_loss', dtype=tf.float32)
    eval_metrics = [metric_fn()] if metric_fn else []
    # If evaluation is required, make a copy of metric as it will be used by
    # both train and evaluation.
    train_metrics = [
        metric.__class__.from_config(metric.get_config())
        for metric in eval_metrics
    ]

    # Create summary writers
260
261
262
263
264
265
266
    if _should_export_summary(strategy):
      summary_dir = os.path.join(model_dir, 'summaries')
    else:
      # In multi worker training we need every worker to write summary, because
      # variables can trigger synchronization on read and synchronization needs
      # all workers to participate.
      summary_dir = tempfile.mkdtemp()
267
    eval_summary_writer = tf.summary.create_file_writer(
268
        os.path.join(summary_dir, 'eval'))
269
270
271
272
    if steps_per_loop >= _MIN_SUMMARY_STEPS:
      # Only writes summary when the stats are collected sufficiently over
      # enough steps.
      train_summary_writer = tf.summary.create_file_writer(
273
          os.path.join(summary_dir, 'train'))
274
275
276
277
278
279
280
281
282
283
284
285
286
    else:
      train_summary_writer = None

    # Collects training variables.
    training_vars = model.trainable_variables

    def _replicated_step(inputs):
      """Replicated training step."""

      inputs, labels = inputs
      with tf.GradientTape() as tape:
        model_outputs = model(inputs, training=True)
        loss = loss_fn(labels, model_outputs)
Zongwei Zhou's avatar
Zongwei Zhou committed
287
288
289
290
291
      if explicit_allreduce:
        grad_utils.minimize_using_explicit_allreduce(tape, optimizer, loss,
                                                     training_vars,
                                                     pre_allreduce_callbacks,
                                                     post_allreduce_callbacks)
292
      else:
Zongwei Zhou's avatar
Zongwei Zhou committed
293
294
295
296
297
298
299
300
301
        if isinstance(optimizer,
                      tf.keras.mixed_precision.experimental.LossScaleOptimizer):
          with tape:
            scaled_loss = optimizer.get_scaled_loss(loss)
          scaled_grads = tape.gradient(scaled_loss, training_vars)
          grads = optimizer.get_unscaled_gradients(scaled_grads)
        else:
          grads = tape.gradient(loss, training_vars)
        optimizer.apply_gradients(zip(grads, training_vars))
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
      # For reporting, the metric takes the mean of losses.
      train_loss_metric.update_state(loss)
      for metric in train_metrics:
        metric.update_state(labels, model_outputs)

    @tf.function
    def train_steps(iterator, steps):
      """Performs distributed training steps in a loop.

      Args:
        iterator: the distributed iterator of training datasets.
        steps: an tf.int32 integer tensor to specify number of steps to run
          inside host training loop.

      Raises:
        ValueError: Any of the arguments or tensor shapes are invalid.
      """
      if not isinstance(steps, tf.Tensor):
        raise ValueError('steps should be an Tensor. Python object may cause '
                         'retracing.')

      for _ in tf.range(steps):
        strategy.experimental_run_v2(_replicated_step, args=(next(iterator),))
325

326
327
    def train_single_step(iterator):
      """Performs a distributed training step.
328

329
330
      Args:
        iterator: the distributed iterator of training datasets.
331

332
333
334
335
      Raises:
        ValueError: Any of the arguments or tensor shapes are invalid.
      """
      strategy.experimental_run_v2(_replicated_step, args=(next(iterator),))
336

337
338
    def test_step(iterator):
      """Calculates evaluation metrics on distributed devices."""
339

340
341
      def _test_step_fn(inputs):
        """Replicated accuracy calculation."""
342

343
344
345
346
        inputs, labels = inputs
        model_outputs = model(inputs, training=False)
        for metric in eval_metrics:
          metric.update_state(labels, model_outputs)
347

348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
      strategy.experimental_run_v2(_test_step_fn, args=(next(iterator),))

    if not run_eagerly:
      train_single_step = tf.function(train_single_step)
      test_step = tf.function(test_step)

    def _run_evaluation(current_training_step, test_iterator):
      """Runs validation steps and aggregate metrics."""
      for _ in range(eval_steps):
        test_step(test_iterator)

      with eval_summary_writer.as_default():
        for metric in eval_metrics + model.metrics:
          metric_value = _float_metric_value(metric)
          logging.info('Step: [%d] Validation %s = %f', current_training_step,
                       metric.name, metric_value)
          tf.summary.scalar(
              metric.name, metric_value, step=current_training_step)
        eval_summary_writer.flush()

    def _run_callbacks_on_batch_begin(batch):
      """Runs custom callbacks at the start of every step."""
      if not custom_callbacks:
        return
      for callback in custom_callbacks:
        callback.on_batch_begin(batch)

375
    def _run_callbacks_on_batch_end(batch, logs):
376
377
378
379
      """Runs custom callbacks at the end of every step."""
      if not custom_callbacks:
        return
      for callback in custom_callbacks:
380
        callback.on_batch_end(batch, logs)
381
382
383

    # Training loop starts here.
    checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
Chen Chen's avatar
Chen Chen committed
384
385
386
    sub_model_checkpoint = tf.train.Checkpoint(
        model=sub_model) if sub_model_export_name else None

387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
    latest_checkpoint_file = tf.train.latest_checkpoint(model_dir)
    if latest_checkpoint_file:
      logging.info(
          'Checkpoint file %s found and restoring from '
          'checkpoint', latest_checkpoint_file)
      checkpoint.restore(latest_checkpoint_file)
      logging.info('Loading from checkpoint file completed')

    current_step = optimizer.iterations.numpy()
    checkpoint_name = 'ctl_step_{step}.ckpt'

    while current_step < total_training_steps:
      # Training loss/metric are taking average over steps inside micro
      # training loop. We reset the their values before each round.
      train_loss_metric.reset_states()
      for metric in train_metrics + model.metrics:
        metric.reset_states()

      _run_callbacks_on_batch_begin(current_step)
      # Runs several steps in the host while loop.
407
      steps = steps_to_run(current_step, steps_per_epoch, steps_per_loop)
408

409
      if tf.test.is_built_with_cuda():
410
411
        # TODO(zongweiz): merge with train_steps once tf.while_loop
        # GPU performance bugs are fixed.
412
413
        for _ in range(steps):
          train_single_step(train_iterator)
414
415
416
417
      else:
        # Converts steps to a Tensor to avoid tf.function retracing.
        train_steps(train_iterator,
                    tf.convert_to_tensor(steps, dtype=tf.int32))
418
      train_loss = _float_metric_value(train_loss_metric)
419
      current_step += steps
420
      _run_callbacks_on_batch_end(current_step - 1, {'loss': train_loss})
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

      # Updates training logging.
      training_status = 'Train Step: %d/%d  / loss = %s' % (
          current_step, total_training_steps, train_loss)

      if train_summary_writer:
        with train_summary_writer.as_default():
          tf.summary.scalar(
              train_loss_metric.name, train_loss, step=current_step)
          for metric in train_metrics + model.metrics:
            metric_value = _float_metric_value(metric)
            training_status += '  %s = %f' % (metric.name, metric_value)
            tf.summary.scalar(metric.name, metric_value, step=current_step)
          train_summary_writer.flush()
      logging.info(training_status)

      # Saves model checkpoints and run validation steps at every epoch end.
      if current_step % steps_per_epoch == 0:
        # To avoid repeated model saving, we do not save after the last
        # step of training.
        if current_step < total_training_steps:
442
          _save_checkpoint(strategy, checkpoint, model_dir,
443
                           checkpoint_name.format(step=current_step))
Chen Chen's avatar
Chen Chen committed
444
445
          if sub_model_export_name:
            _save_checkpoint(
446
                strategy, sub_model_checkpoint, model_dir,
Chen Chen's avatar
Chen Chen committed
447
                '%s_step_%d.ckpt' % (sub_model_export_name, current_step))
448
449
450
451
452
453
454
        if eval_input_fn:
          logging.info('Running evaluation after step: %s.', current_step)
          _run_evaluation(current_step,
                          _get_input_iterator(eval_input_fn, strategy))
          # Re-initialize evaluation metric.
          for metric in eval_metrics + model.metrics:
            metric.reset_states()
455

456
    _save_checkpoint(strategy, checkpoint, model_dir,
457
                     checkpoint_name.format(step=current_step))
Chen Chen's avatar
Chen Chen committed
458
    if sub_model_export_name:
459
      _save_checkpoint(strategy, sub_model_checkpoint, model_dir,
Chen Chen's avatar
Chen Chen committed
460
                       '%s.ckpt' % sub_model_export_name)
461

462
463
464
465
    if eval_input_fn:
      logging.info('Running final evaluation after training is complete.')
      _run_evaluation(current_step,
                      _get_input_iterator(eval_input_fn, strategy))
466

467
468
469
470
471
472
473
474
475
    training_summary = {
        'total_training_steps': total_training_steps,
        'train_loss': _float_metric_value(train_loss_metric),
    }
    if eval_metrics:
      # TODO(hongkuny): Cleans up summary reporting in text.
      training_summary['last_train_metrics'] = _float_metric_value(
          train_metrics[0])
      training_summary['eval_metrics'] = _float_metric_value(eval_metrics[0])
476

477
    write_txt_summary(training_summary, summary_dir)
478

479
480
481
    if not _should_export_summary(strategy):
      tf.io.gfile.rmtree(summary_dir)

482
    return model