maskrcnn.py 18 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""MaskRCNN task definition."""
import os
from typing import Any, Optional, List, Tuple, Mapping

from absl import logging
import tensorflow as tf
from official.common import dataset_fn
from official.core import base_task
from official.core import task_factory
from official.vision.configs import maskrcnn as exp_cfg
from official.vision.dataloaders import input_reader_factory
from official.vision.dataloaders import maskrcnn_input
from official.vision.dataloaders import tf_example_decoder
from official.vision.dataloaders import tf_example_label_map_decoder
from official.vision.evaluation import coco_evaluator
from official.vision.evaluation import coco_utils
from official.vision.losses import maskrcnn_losses
from official.vision.modeling import factory


def zero_out_disallowed_class_ids(batch_class_ids: tf.Tensor,
                                  allowed_class_ids: List[int]):
  """Zero out IDs of classes not in allowed_class_ids.

  Args:
    batch_class_ids: A [batch_size, num_instances] int tensor of input
      class IDs.
    allowed_class_ids: A python list of class IDs which we want to allow.

  Returns:
      filtered_class_ids: A [batch_size, num_instances] int tensor with any
        class ID not in allowed_class_ids set to 0.
  """

  allowed_class_ids = tf.constant(allowed_class_ids,
                                  dtype=batch_class_ids.dtype)

  match_ids = (batch_class_ids[:, :, tf.newaxis] ==
               allowed_class_ids[tf.newaxis, tf.newaxis, :])

  match_ids = tf.reduce_any(match_ids, axis=2)
  return tf.where(match_ids, batch_class_ids, tf.zeros_like(batch_class_ids))


@task_factory.register_task_cls(exp_cfg.MaskRCNNTask)
class MaskRCNNTask(base_task.Task):
  """A single-replica view of training procedure.

  Mask R-CNN task provides artifacts for training/evalution procedures,
  including loading/iterating over Datasets, initializing the model, calculating
  the loss, post-processing, and customized metrics with reduction.
  """

  def build_model(self):
    """Build Mask R-CNN model."""

    input_specs = tf.keras.layers.InputSpec(
        shape=[None] + self.task_config.model.input_size)

    l2_weight_decay = self.task_config.losses.l2_weight_decay
    # Divide weight decay by 2.0 to match the implementation of tf.nn.l2_loss.
    # (https://www.tensorflow.org/api_docs/python/tf/keras/regularizers/l2)
    # (https://www.tensorflow.org/api_docs/python/tf/nn/l2_loss)
    l2_regularizer = (tf.keras.regularizers.l2(
        l2_weight_decay / 2.0) if l2_weight_decay else None)

    model = factory.build_maskrcnn(
        input_specs=input_specs,
        model_config=self.task_config.model,
        l2_regularizer=l2_regularizer)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
85
86
87
88

    if self.task_config.freeze_backbone:
      model.backbone.trainable = False

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
89
90
91
92
    return model

  def initialize(self, model: tf.keras.Model):
    """Loading pretrained checkpoint."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
93

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
    if not self.task_config.init_checkpoint:
      return

    ckpt_dir_or_file = self.task_config.init_checkpoint
    if tf.io.gfile.isdir(ckpt_dir_or_file):
      ckpt_dir_or_file = tf.train.latest_checkpoint(ckpt_dir_or_file)

    # Restoring checkpoint.
    if self.task_config.init_checkpoint_modules == 'all':
      ckpt = tf.train.Checkpoint(**model.checkpoint_items)
      status = ckpt.read(ckpt_dir_or_file)
      status.expect_partial().assert_existing_objects_matched()
    else:
      ckpt_items = {}
      if 'backbone' in self.task_config.init_checkpoint_modules:
        ckpt_items.update(backbone=model.backbone)
      if 'decoder' in self.task_config.init_checkpoint_modules:
        ckpt_items.update(decoder=model.decoder)

      ckpt = tf.train.Checkpoint(**ckpt_items)
      status = ckpt.read(ckpt_dir_or_file)
      status.expect_partial().assert_existing_objects_matched()

    logging.info('Finished loading pretrained checkpoint from %s',
                 ckpt_dir_or_file)

  def build_inputs(self,
                   params: exp_cfg.DataConfig,
                   input_context: Optional[tf.distribute.InputContext] = None):
    """Build input dataset."""
    decoder_cfg = params.decoder.get()
    if params.decoder.type == 'simple_decoder':
      decoder = tf_example_decoder.TfExampleDecoder(
          include_mask=self._task_config.model.include_mask,
          regenerate_source_id=decoder_cfg.regenerate_source_id,
          mask_binarize_threshold=decoder_cfg.mask_binarize_threshold)
    elif params.decoder.type == 'label_map_decoder':
      decoder = tf_example_label_map_decoder.TfExampleDecoderLabelMap(
          label_map=decoder_cfg.label_map,
          include_mask=self._task_config.model.include_mask,
          regenerate_source_id=decoder_cfg.regenerate_source_id,
          mask_binarize_threshold=decoder_cfg.mask_binarize_threshold)
    else:
      raise ValueError('Unknown decoder type: {}!'.format(params.decoder.type))

    parser = maskrcnn_input.Parser(
        output_size=self.task_config.model.input_size[:2],
        min_level=self.task_config.model.min_level,
        max_level=self.task_config.model.max_level,
        num_scales=self.task_config.model.anchor.num_scales,
        aspect_ratios=self.task_config.model.anchor.aspect_ratios,
        anchor_size=self.task_config.model.anchor.anchor_size,
        dtype=params.dtype,
        rpn_match_threshold=params.parser.rpn_match_threshold,
        rpn_unmatched_threshold=params.parser.rpn_unmatched_threshold,
        rpn_batch_size_per_im=params.parser.rpn_batch_size_per_im,
        rpn_fg_fraction=params.parser.rpn_fg_fraction,
        aug_rand_hflip=params.parser.aug_rand_hflip,
        aug_scale_min=params.parser.aug_scale_min,
        aug_scale_max=params.parser.aug_scale_max,
        skip_crowd_during_training=params.parser.skip_crowd_during_training,
        max_num_instances=params.parser.max_num_instances,
        include_mask=self._task_config.model.include_mask,
        mask_crop_size=params.parser.mask_crop_size)

    reader = input_reader_factory.input_reader_generator(
        params,
        dataset_fn=dataset_fn.pick_dataset_fn(params.file_type),
        decoder_fn=decoder.decode,
        parser_fn=parser.parse_fn(params.is_training))
    dataset = reader.read(input_context=input_context)

    return dataset

  def build_losses(self,
                   outputs: Mapping[str, Any],
                   labels: Mapping[str, Any],
                   aux_losses: Optional[Any] = None):
    """Build Mask R-CNN losses."""
    params = self.task_config
    cascade_ious = params.model.roi_sampler.cascade_iou_thresholds

    rpn_score_loss_fn = maskrcnn_losses.RpnScoreLoss(
        tf.shape(outputs['box_outputs'])[1])
    rpn_box_loss_fn = maskrcnn_losses.RpnBoxLoss(
        params.losses.rpn_huber_loss_delta)
    rpn_score_loss = tf.reduce_mean(
        rpn_score_loss_fn(
            outputs['rpn_scores'], labels['rpn_score_targets']))
    rpn_box_loss = tf.reduce_mean(
        rpn_box_loss_fn(
            outputs['rpn_boxes'], labels['rpn_box_targets']))

    frcnn_cls_loss_fn = maskrcnn_losses.FastrcnnClassLoss()
    frcnn_box_loss_fn = maskrcnn_losses.FastrcnnBoxLoss(
        params.losses.frcnn_huber_loss_delta,
        params.model.detection_head.class_agnostic_bbox_pred)

    # Final cls/box losses are computed as an average of all detection heads.
    frcnn_cls_loss = 0.0
    frcnn_box_loss = 0.0
    num_det_heads = 1 if cascade_ious is None else 1 + len(cascade_ious)
    for cas_num in range(num_det_heads):
      frcnn_cls_loss_i = tf.reduce_mean(
          frcnn_cls_loss_fn(
              outputs['class_outputs_{}'
                      .format(cas_num) if cas_num else 'class_outputs'],
              outputs['class_targets_{}'
                      .format(cas_num) if cas_num else 'class_targets']))
      frcnn_box_loss_i = tf.reduce_mean(
          frcnn_box_loss_fn(
              outputs['box_outputs_{}'.format(cas_num
                                             ) if cas_num else 'box_outputs'],
              outputs['class_targets_{}'
                      .format(cas_num) if cas_num else 'class_targets'],
              outputs['box_targets_{}'.format(cas_num
                                             ) if cas_num else 'box_targets']))
      frcnn_cls_loss += frcnn_cls_loss_i
      frcnn_box_loss += frcnn_box_loss_i
    frcnn_cls_loss /= num_det_heads
    frcnn_box_loss /= num_det_heads

    if params.model.include_mask:
      mask_loss_fn = maskrcnn_losses.MaskrcnnLoss()
      mask_class_targets = outputs['mask_class_targets']
      if self._task_config.allowed_mask_class_ids is not None:
        # Classes with ID=0 are ignored by mask_loss_fn in loss computation.
        mask_class_targets = zero_out_disallowed_class_ids(
            mask_class_targets, self._task_config.allowed_mask_class_ids)

      mask_loss = tf.reduce_mean(
          mask_loss_fn(
              outputs['mask_outputs'],
              outputs['mask_targets'],
              mask_class_targets))
    else:
      mask_loss = 0.0

    model_loss = (
        params.losses.rpn_score_weight * rpn_score_loss +
        params.losses.rpn_box_weight * rpn_box_loss +
        params.losses.frcnn_class_weight * frcnn_cls_loss +
        params.losses.frcnn_box_weight * frcnn_box_loss +
        params.losses.mask_weight * mask_loss)

    total_loss = model_loss
    if aux_losses:
      reg_loss = tf.reduce_sum(aux_losses)
      total_loss = model_loss + reg_loss

    total_loss = params.losses.loss_weight * total_loss
    losses = {
        'total_loss': total_loss,
        'rpn_score_loss': rpn_score_loss,
        'rpn_box_loss': rpn_box_loss,
        'frcnn_cls_loss': frcnn_cls_loss,
        'frcnn_box_loss': frcnn_box_loss,
        'mask_loss': mask_loss,
        'model_loss': model_loss,
    }
    return losses

  def _build_coco_metrics(self):
    """Build COCO metrics evaluator."""
    if (not self._task_config.model.include_mask
       ) or self._task_config.annotation_file:
      self.coco_metric = coco_evaluator.COCOEvaluator(
          annotation_file=self._task_config.annotation_file,
          include_mask=self._task_config.model.include_mask,
          per_category_metrics=self._task_config.per_category_metrics)
    else:
      # Builds COCO-style annotation file if include_mask is True, and
      # annotation_file isn't provided.
      annotation_path = os.path.join(self._logging_dir, 'annotation.json')
      if tf.io.gfile.exists(annotation_path):
        logging.info(
            'annotation.json file exists, skipping creating the annotation'
            ' file.')
      else:
        if self._task_config.validation_data.num_examples <= 0:
          logging.info('validation_data.num_examples needs to be > 0')
        if not self._task_config.validation_data.input_path:
          logging.info('Can not create annotation file for tfds.')
        logging.info(
            'Creating coco-style annotation file: %s', annotation_path)
        coco_utils.scan_and_generator_annotation_file(
            self._task_config.validation_data.input_path,
            self._task_config.validation_data.file_type,
            self._task_config.validation_data.num_examples,
            self.task_config.model.include_mask, annotation_path,
            regenerate_source_id=self._task_config.validation_data.decoder
            .simple_decoder.regenerate_source_id)
      self.coco_metric = coco_evaluator.COCOEvaluator(
          annotation_file=annotation_path,
          include_mask=self._task_config.model.include_mask,
          per_category_metrics=self._task_config.per_category_metrics)

  def build_metrics(self, training: bool = True):
    """Build detection metrics."""
    metrics = []
    if training:
      metric_names = [
          'total_loss',
          'rpn_score_loss',
          'rpn_box_loss',
          'frcnn_cls_loss',
          'frcnn_box_loss',
          'mask_loss',
          'model_loss'
      ]
      for name in metric_names:
        metrics.append(tf.keras.metrics.Mean(name, dtype=tf.float32))

    else:
      if self._task_config.use_coco_metrics:
        self._build_coco_metrics()
      if self._task_config.use_wod_metrics:
        # To use Waymo open dataset metrics, please install one of the pip
        # package `waymo-open-dataset-tf-*` from
        # https://github.com/waymo-research/waymo-open-dataset/blob/master/docs/quick_start.md#use-pre-compiled-pippip3-packages-for-linux
        # Note that the package is built with specific tensorflow version and
        # will produce error if it does not match the tf version that is
        # currently used.
        try:
          from official.vision.evaluation import wod_detection_evaluator  # pylint: disable=g-import-not-at-top
        except ModuleNotFoundError:
          logging.error('waymo-open-dataset should be installed to enable Waymo'
                        ' evaluator.')
          raise
        self.wod_metric = wod_detection_evaluator.WOD2dDetectionEvaluator()

    return metrics

  def train_step(self,
                 inputs: Tuple[Any, Any],
                 model: tf.keras.Model,
                 optimizer: tf.keras.optimizers.Optimizer,
                 metrics: Optional[List[Any]] = None):
    """Does forward and backward.

    Args:
      inputs: a dictionary of input tensors.
      model: the model, forward pass definition.
      optimizer: the optimizer for this training step.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    images, labels = inputs
    num_replicas = tf.distribute.get_strategy().num_replicas_in_sync
    with tf.GradientTape() as tape:
      outputs = model(
          images,
          image_shape=labels['image_info'][:, 1, :],
          anchor_boxes=labels['anchor_boxes'],
          gt_boxes=labels['gt_boxes'],
          gt_classes=labels['gt_classes'],
          gt_masks=(labels['gt_masks'] if self.task_config.model.include_mask
                    else None),
          training=True)
      outputs = tf.nest.map_structure(
          lambda x: tf.cast(x, tf.float32), outputs)

      # Computes per-replica loss.
      losses = self.build_losses(
          outputs=outputs, labels=labels, aux_losses=model.losses)
      scaled_loss = losses['total_loss'] / num_replicas

      # For mixed_precision policy, when LossScaleOptimizer is used, loss is
      # scaled for numerical stability.
      if isinstance(optimizer, tf.keras.mixed_precision.LossScaleOptimizer):
        scaled_loss = optimizer.get_scaled_loss(scaled_loss)

    tvars = model.trainable_variables
    grads = tape.gradient(scaled_loss, tvars)
    # Scales back gradient when LossScaleOptimizer is used.
    if isinstance(optimizer, tf.keras.mixed_precision.LossScaleOptimizer):
      grads = optimizer.get_unscaled_gradients(grads)
    optimizer.apply_gradients(list(zip(grads, tvars)))

    logs = {self.loss: losses['total_loss']}

    if metrics:
      for m in metrics:
        m.update_state(losses[m.name])

    return logs

  def validation_step(self,
                      inputs: Tuple[Any, Any],
                      model: tf.keras.Model,
                      metrics: Optional[List[Any]] = None):
    """Validatation step.

    Args:
      inputs: a dictionary of input tensors.
      model: the keras.Model.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    images, labels = inputs

    outputs = model(
        images,
        anchor_boxes=labels['anchor_boxes'],
        image_shape=labels['image_info'][:, 1, :],
        training=False)

    logs = {self.loss: 0}
    if self._task_config.use_coco_metrics:
      coco_model_outputs = {
          'detection_boxes': outputs['detection_boxes'],
          'detection_scores': outputs['detection_scores'],
          'detection_classes': outputs['detection_classes'],
          'num_detections': outputs['num_detections'],
          'source_id': labels['groundtruths']['source_id'],
          'image_info': labels['image_info']
      }
      if self.task_config.model.include_mask:
        coco_model_outputs.update({
            'detection_masks': outputs['detection_masks'],
        })
      logs.update(
          {self.coco_metric.name: (labels['groundtruths'], coco_model_outputs)})

    if self.task_config.use_wod_metrics:
      wod_model_outputs = {
          'detection_boxes': outputs['detection_boxes'],
          'detection_scores': outputs['detection_scores'],
          'detection_classes': outputs['detection_classes'],
          'num_detections': outputs['num_detections'],
          'source_id': labels['groundtruths']['source_id'],
          'image_info': labels['image_info']
      }
      logs.update(
          {self.wod_metric.name: (labels['groundtruths'], wod_model_outputs)})
    return logs

  def aggregate_logs(self, state=None, step_outputs=None):
    if self._task_config.use_coco_metrics:
      if state is None:
        self.coco_metric.reset_states()
      self.coco_metric.update_state(
          step_outputs[self.coco_metric.name][0],
          step_outputs[self.coco_metric.name][1])
    if self._task_config.use_wod_metrics:
      if state is None:
        self.wod_metric.reset_states()
      self.wod_metric.update_state(
          step_outputs[self.wod_metric.name][0],
          step_outputs[self.wod_metric.name][1])
    if state is None:
      # Create an arbitrary state to indicate it's not the first step in the
      # following calls to this function.
      state = True
    return state

  def reduce_aggregated_logs(self, aggregated_logs, global_step=None):
    logs = {}
    if self._task_config.use_coco_metrics:
      logs.update(self.coco_metric.result())
    if self._task_config.use_wod_metrics:
      logs.update(self.wod_metric.result())
    return logs