maskrcnn.py 18.3 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""R-CNN(-RS) configuration definition."""

import dataclasses
import os
from typing import List, Optional, Union

from official.core import config_definitions as cfg
from official.core import exp_factory
from official.modeling import hyperparams
from official.modeling import optimization
from official.vision.configs import common
from official.vision.configs import decoders
from official.vision.configs import backbones


# pylint: disable=missing-class-docstring
@dataclasses.dataclass
class Parser(hyperparams.Config):
  num_channels: int = 3
  match_threshold: float = 0.5
  unmatched_threshold: float = 0.5
  aug_rand_hflip: bool = False
  aug_scale_min: float = 1.0
  aug_scale_max: float = 1.0
  skip_crowd_during_training: bool = True
  max_num_instances: int = 100
  rpn_match_threshold: float = 0.7
  rpn_unmatched_threshold: float = 0.3
  rpn_batch_size_per_im: int = 256
  rpn_fg_fraction: float = 0.5
  mask_crop_size: int = 112


@dataclasses.dataclass
class DataConfig(cfg.DataConfig):
  """Input config for training."""
  input_path: str = ''
  global_batch_size: int = 0
  is_training: bool = False
  dtype: str = 'bfloat16'
  decoder: common.DataDecoder = common.DataDecoder()
  parser: Parser = Parser()
  shuffle_buffer_size: int = 10000
  file_type: str = 'tfrecord'
  drop_remainder: bool = True
  # Number of examples in the data set, it's used to create the annotation file.
  num_examples: int = -1


@dataclasses.dataclass
class Anchor(hyperparams.Config):
  num_scales: int = 1
  aspect_ratios: List[float] = dataclasses.field(
      default_factory=lambda: [0.5, 1.0, 2.0])
  anchor_size: float = 8.0


@dataclasses.dataclass
class RPNHead(hyperparams.Config):
  num_convs: int = 1
  num_filters: int = 256
  use_separable_conv: bool = False


@dataclasses.dataclass
class DetectionHead(hyperparams.Config):
  num_convs: int = 4
  num_filters: int = 256
  use_separable_conv: bool = False
  num_fcs: int = 1
  fc_dims: int = 1024
  class_agnostic_bbox_pred: bool = False  # Has to be True for Cascade RCNN.
  # If additional IoUs are passed in 'cascade_iou_thresholds'
  # then ensemble the class probabilities from all heads.
  cascade_class_ensemble: bool = False


@dataclasses.dataclass
class ROIGenerator(hyperparams.Config):
  pre_nms_top_k: int = 2000
  pre_nms_score_threshold: float = 0.0
  pre_nms_min_size_threshold: float = 0.0
  nms_iou_threshold: float = 0.7
  num_proposals: int = 1000
  test_pre_nms_top_k: int = 1000
  test_pre_nms_score_threshold: float = 0.0
  test_pre_nms_min_size_threshold: float = 0.0
  test_nms_iou_threshold: float = 0.7
  test_num_proposals: int = 1000
  use_batched_nms: bool = False


@dataclasses.dataclass
class ROISampler(hyperparams.Config):
  mix_gt_boxes: bool = True
  num_sampled_rois: int = 512
  foreground_fraction: float = 0.25
  foreground_iou_threshold: float = 0.5
  background_iou_high_threshold: float = 0.5
  background_iou_low_threshold: float = 0.0
  # IoU thresholds for additional FRCNN heads in Cascade mode.
  # `foreground_iou_threshold` is the first threshold.
  cascade_iou_thresholds: Optional[List[float]] = None


@dataclasses.dataclass
class ROIAligner(hyperparams.Config):
  crop_size: int = 7
  sample_offset: float = 0.5


@dataclasses.dataclass
class DetectionGenerator(hyperparams.Config):
  apply_nms: bool = True
  pre_nms_top_k: int = 5000
  pre_nms_score_threshold: float = 0.05
  nms_iou_threshold: float = 0.5
  max_num_detections: int = 100
  nms_version: str = 'v2'  # `v2`, `v1`, `batched`
  use_cpu_nms: bool = False
  soft_nms_sigma: Optional[float] = None  # Only works when nms_version='v1'.


@dataclasses.dataclass
class MaskHead(hyperparams.Config):
  upsample_factor: int = 2
  num_convs: int = 4
  num_filters: int = 256
  use_separable_conv: bool = False
  class_agnostic: bool = False


@dataclasses.dataclass
class MaskSampler(hyperparams.Config):
  num_sampled_masks: int = 128


@dataclasses.dataclass
class MaskROIAligner(hyperparams.Config):
  crop_size: int = 14
  sample_offset: float = 0.5


@dataclasses.dataclass
class MaskRCNN(hyperparams.Config):
  num_classes: int = 0
  input_size: List[int] = dataclasses.field(default_factory=list)
  min_level: int = 2
  max_level: int = 6
  anchor: Anchor = Anchor()
  include_mask: bool = True
  backbone: backbones.Backbone = backbones.Backbone(
      type='resnet', resnet=backbones.ResNet())
  decoder: decoders.Decoder = decoders.Decoder(
      type='fpn', fpn=decoders.FPN())
  rpn_head: RPNHead = RPNHead()
  detection_head: DetectionHead = DetectionHead()
  roi_generator: ROIGenerator = ROIGenerator()
  roi_sampler: ROISampler = ROISampler()
  roi_aligner: ROIAligner = ROIAligner()
  detection_generator: DetectionGenerator = DetectionGenerator()
  mask_head: Optional[MaskHead] = MaskHead()
  mask_sampler: Optional[MaskSampler] = MaskSampler()
  mask_roi_aligner: Optional[MaskROIAligner] = MaskROIAligner()
  norm_activation: common.NormActivation = common.NormActivation(
      norm_momentum=0.997,
      norm_epsilon=0.0001,
      use_sync_bn=True)


@dataclasses.dataclass
class Losses(hyperparams.Config):
  loss_weight: float = 1.0
  rpn_huber_loss_delta: float = 1. / 9.
  frcnn_huber_loss_delta: float = 1.
  l2_weight_decay: float = 0.0
  rpn_score_weight: float = 1.0
  rpn_box_weight: float = 1.0
  frcnn_class_weight: float = 1.0
  frcnn_box_weight: float = 1.0
  mask_weight: float = 1.0


@dataclasses.dataclass
class MaskRCNNTask(cfg.TaskConfig):
  model: MaskRCNN = MaskRCNN()
  train_data: DataConfig = DataConfig(is_training=True)
  validation_data: DataConfig = DataConfig(is_training=False,
                                           drop_remainder=False)
  losses: Losses = Losses()
  init_checkpoint: Optional[str] = None
  init_checkpoint_modules: Union[
      str, List[str]] = 'all'  # all, backbone, and/or decoder
  annotation_file: Optional[str] = None
  per_category_metrics: bool = False
  # If set, we only use masks for the specified class IDs.
  allowed_mask_class_ids: Optional[List[int]] = None
  # If set, the COCO metrics will be computed.
  use_coco_metrics: bool = True
  # If set, the Waymo Open Dataset evaluator would be used.
  use_wod_metrics: bool = False

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
217
218
219
220
  # If set, freezes the backbone during training.
  # TODO(crisnv) Add paper link when available.
  freeze_backbone: bool = False

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526

COCO_INPUT_PATH_BASE = 'coco'


@exp_factory.register_config_factory('fasterrcnn_resnetfpn_coco')
def fasterrcnn_resnetfpn_coco() -> cfg.ExperimentConfig:
  """COCO object detection with Faster R-CNN."""
  steps_per_epoch = 500
  coco_val_samples = 5000
  train_batch_size = 64
  eval_batch_size = 8

  config = cfg.ExperimentConfig(
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
      task=MaskRCNNTask(
          init_checkpoint='gs://cloud-tpu-checkpoints/vision-2.0/resnet50_imagenet/ckpt-28080',
          init_checkpoint_modules='backbone',
          annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
                                       'instances_val2017.json'),
          model=MaskRCNN(
              num_classes=91,
              input_size=[1024, 1024, 3],
              include_mask=False,
              mask_head=None,
              mask_sampler=None,
              mask_roi_aligner=None),
          losses=Losses(l2_weight_decay=0.00004),
          train_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size,
              parser=Parser(
                  aug_rand_hflip=True, aug_scale_min=0.8, aug_scale_max=1.25)),
          validation_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
              is_training=False,
              global_batch_size=eval_batch_size,
              drop_remainder=False)),
      trainer=cfg.TrainerConfig(
          train_steps=22500,
          validation_steps=coco_val_samples // eval_batch_size,
          validation_interval=steps_per_epoch,
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [15000, 20000],
                      'values': [0.12, 0.012, 0.0012],
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 500,
                      'warmup_learning_rate': 0.0067
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])
  return config


@exp_factory.register_config_factory('maskrcnn_resnetfpn_coco')
def maskrcnn_resnetfpn_coco() -> cfg.ExperimentConfig:
  """COCO object detection with Mask R-CNN."""
  steps_per_epoch = 500
  coco_val_samples = 5000
  train_batch_size = 64
  eval_batch_size = 8

  config = cfg.ExperimentConfig(
      runtime=cfg.RuntimeConfig(
          mixed_precision_dtype='bfloat16', enable_xla=True),
      task=MaskRCNNTask(
          init_checkpoint='gs://cloud-tpu-checkpoints/vision-2.0/resnet50_imagenet/ckpt-28080',
          init_checkpoint_modules='backbone',
          annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
                                       'instances_val2017.json'),
          model=MaskRCNN(
              num_classes=91, input_size=[1024, 1024, 3], include_mask=True),
          losses=Losses(l2_weight_decay=0.00004),
          train_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size,
              parser=Parser(
                  aug_rand_hflip=True, aug_scale_min=0.8, aug_scale_max=1.25)),
          validation_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
              is_training=False,
              global_batch_size=eval_batch_size,
              drop_remainder=False)),
      trainer=cfg.TrainerConfig(
          train_steps=22500,
          validation_steps=coco_val_samples // eval_batch_size,
          validation_interval=steps_per_epoch,
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [15000, 20000],
                      'values': [0.12, 0.012, 0.0012],
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 500,
                      'warmup_learning_rate': 0.0067
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])
  return config


@exp_factory.register_config_factory('maskrcnn_spinenet_coco')
def maskrcnn_spinenet_coco() -> cfg.ExperimentConfig:
  """COCO object detection with Mask R-CNN with SpineNet backbone."""
  steps_per_epoch = 463
  coco_val_samples = 5000
  train_batch_size = 256
  eval_batch_size = 8

  config = cfg.ExperimentConfig(
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
      task=MaskRCNNTask(
          annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
                                       'instances_val2017.json'),
          model=MaskRCNN(
              backbone=backbones.Backbone(
                  type='spinenet',
                  spinenet=backbones.SpineNet(
                      model_id='49',
                      min_level=3,
                      max_level=7,
                  )),
              decoder=decoders.Decoder(
                  type='identity', identity=decoders.Identity()),
              anchor=Anchor(anchor_size=3),
              norm_activation=common.NormActivation(use_sync_bn=True),
              num_classes=91,
              input_size=[640, 640, 3],
              min_level=3,
              max_level=7,
              include_mask=True),
          losses=Losses(l2_weight_decay=0.00004),
          train_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size,
              parser=Parser(
                  aug_rand_hflip=True, aug_scale_min=0.5, aug_scale_max=2.0)),
          validation_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
              is_training=False,
              global_batch_size=eval_batch_size,
              drop_remainder=False)),
      trainer=cfg.TrainerConfig(
          train_steps=steps_per_epoch * 350,
          validation_steps=coco_val_samples // eval_batch_size,
          validation_interval=steps_per_epoch,
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [
                          steps_per_epoch * 320, steps_per_epoch * 340
                      ],
                      'values': [0.32, 0.032, 0.0032],
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 2000,
                      'warmup_learning_rate': 0.0067
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None',
          'task.model.min_level == task.model.backbone.spinenet.min_level',
          'task.model.max_level == task.model.backbone.spinenet.max_level',
      ])
  return config


@exp_factory.register_config_factory('cascadercnn_spinenet_coco')
def cascadercnn_spinenet_coco() -> cfg.ExperimentConfig:
  """COCO object detection with Cascade RCNN-RS with SpineNet backbone."""
  steps_per_epoch = 463
  coco_val_samples = 5000
  train_batch_size = 256
  eval_batch_size = 8

  config = cfg.ExperimentConfig(
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
      task=MaskRCNNTask(
          annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
                                       'instances_val2017.json'),
          model=MaskRCNN(
              backbone=backbones.Backbone(
                  type='spinenet',
                  spinenet=backbones.SpineNet(
                      model_id='49',
                      min_level=3,
                      max_level=7,
                  )),
              decoder=decoders.Decoder(
                  type='identity', identity=decoders.Identity()),
              roi_sampler=ROISampler(cascade_iou_thresholds=[0.6, 0.7]),
              detection_head=DetectionHead(
                  class_agnostic_bbox_pred=True, cascade_class_ensemble=True),
              anchor=Anchor(anchor_size=3),
              norm_activation=common.NormActivation(
                  use_sync_bn=True, activation='swish'),
              num_classes=91,
              input_size=[640, 640, 3],
              min_level=3,
              max_level=7,
              include_mask=True),
          losses=Losses(l2_weight_decay=0.00004),
          train_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size,
              parser=Parser(
                  aug_rand_hflip=True, aug_scale_min=0.1, aug_scale_max=2.5)),
          validation_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
              is_training=False,
              global_batch_size=eval_batch_size,
              drop_remainder=False)),
      trainer=cfg.TrainerConfig(
          train_steps=steps_per_epoch * 500,
          validation_steps=coco_val_samples // eval_batch_size,
          validation_interval=steps_per_epoch,
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [
                          steps_per_epoch * 475, steps_per_epoch * 490
                      ],
                      'values': [0.32, 0.032, 0.0032],
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 2000,
                      'warmup_learning_rate': 0.0067
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None',
          'task.model.min_level == task.model.backbone.spinenet.min_level',
          'task.model.max_level == task.model.backbone.spinenet.max_level',
      ])
  return config