resnet.py 14.5 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

15
"""Contains definitions of ResNet and ResNet-RS models."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
16

Fan Yang's avatar
Fan Yang committed
17
18
from typing import Callable, Optional

Abdullah Rashwan's avatar
Abdullah Rashwan committed
19
20
# Import libraries
import tensorflow as tf
Fan Yang's avatar
Fan Yang committed
21
22

from official.modeling import hyperparams
Abdullah Rashwan's avatar
Abdullah Rashwan committed
23
from official.modeling import tf_utils
Yeqing Li's avatar
Yeqing Li committed
24
from official.vision.beta.modeling.backbones import factory
Abdullah Rashwan's avatar
Abdullah Rashwan committed
25
from official.vision.beta.modeling.layers import nn_blocks
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
26
from official.vision.beta.modeling.layers import nn_layers
Abdullah Rashwan's avatar
Abdullah Rashwan committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

layers = tf.keras.layers

# Specifications for different ResNet variants.
# Each entry specifies block configurations of the particular ResNet variant.
# Each element in the block configuration is in the following format:
# (block_fn, num_filters, block_repeats)
RESNET_SPECS = {
    18: [
        ('residual', 64, 2),
        ('residual', 128, 2),
        ('residual', 256, 2),
        ('residual', 512, 2),
    ],
    34: [
        ('residual', 64, 3),
        ('residual', 128, 4),
        ('residual', 256, 6),
        ('residual', 512, 3),
    ],
    50: [
        ('bottleneck', 64, 3),
        ('bottleneck', 128, 4),
        ('bottleneck', 256, 6),
        ('bottleneck', 512, 3),
    ],
    101: [
        ('bottleneck', 64, 3),
        ('bottleneck', 128, 4),
        ('bottleneck', 256, 23),
        ('bottleneck', 512, 3),
    ],
    152: [
        ('bottleneck', 64, 3),
        ('bottleneck', 128, 8),
        ('bottleneck', 256, 36),
        ('bottleneck', 512, 3),
    ],
    200: [
        ('bottleneck', 64, 3),
        ('bottleneck', 128, 24),
        ('bottleneck', 256, 36),
        ('bottleneck', 512, 3),
    ],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
71
    270: [
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
72
        ('bottleneck', 64, 4),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
73
74
        ('bottleneck', 128, 29),
        ('bottleneck', 256, 53),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
75
76
        ('bottleneck', 512, 4),
    ],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
77
78
79
80
81
82
    350: [
        ('bottleneck', 64, 4),
        ('bottleneck', 128, 36),
        ('bottleneck', 256, 72),
        ('bottleneck', 512, 4),
    ],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
83
84
85
86
87
88
    420: [
        ('bottleneck', 64, 4),
        ('bottleneck', 128, 44),
        ('bottleneck', 256, 87),
        ('bottleneck', 512, 4),
    ],
Abdullah Rashwan's avatar
Abdullah Rashwan committed
89
90
91
92
93
}


@tf.keras.utils.register_keras_serializable(package='Vision')
class ResNet(tf.keras.Model):
94
  """Creates ResNet and ResNet-RS family models.
Fan Yang's avatar
Fan Yang committed
95
96
97
98

  This implements the Deep Residual Network from:
    Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
    Deep Residual Learning for Image Recognition.
99
100
101
102
103
    (https://arxiv.org/pdf/1512.03385) and
    Irwan Bello, William Fedus, Xianzhi Du, Ekin D. Cubuk, Aravind Srinivas,
    Tsung-Yi Lin, Jonathon Shlens, Barret Zoph.
    Revisiting ResNets: Improved Training and Scaling Strategies.
    (https://arxiv.org/abs/2103.07579).
Fan Yang's avatar
Fan Yang committed
104
  """
Abdullah Rashwan's avatar
Abdullah Rashwan committed
105

Fan Yang's avatar
Fan Yang committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
  def __init__(
      self,
      model_id: int,
      input_specs: tf.keras.layers.InputSpec = layers.InputSpec(
          shape=[None, None, None, 3]),
      depth_multiplier: float = 1.0,
      stem_type: str = 'v0',
      resnetd_shortcut: bool = False,
      replace_stem_max_pool: bool = False,
      se_ratio: Optional[float] = None,
      init_stochastic_depth_rate: float = 0.0,
      activation: str = 'relu',
      use_sync_bn: bool = False,
      norm_momentum: float = 0.99,
      norm_epsilon: float = 0.001,
      kernel_initializer: str = 'VarianceScaling',
      kernel_regularizer: Optional[tf.keras.regularizers.Regularizer] = None,
      bias_regularizer: Optional[tf.keras.regularizers.Regularizer] = None,
      **kwargs):
Fan Yang's avatar
Fan Yang committed
125
    """Initializes a ResNet model.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
126
127

    Args:
Fan Yang's avatar
Fan Yang committed
128
129
130
      model_id: An `int` of the depth of ResNet backbone model.
      input_specs: A `tf.keras.layers.InputSpec` of the input tensor.
      depth_multiplier: A `float` of the depth multiplier to uniformaly scale up
131
132
        all layers in channel size. This argument is also referred to as
        `width_multiplier` in (https://arxiv.org/abs/2103.07579).
Fan Yang's avatar
Fan Yang committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
      stem_type: A `str` of stem type of ResNet. Default to `v0`. If set to
        `v1`, use ResNet-D type stem (https://arxiv.org/abs/1812.01187).
      resnetd_shortcut: A `bool` of whether to use ResNet-D shortcut in
        downsampling blocks.
      replace_stem_max_pool: A `bool` of whether to replace the max pool in stem
        with a stride-2 conv,
      se_ratio: A `float` or None. Ratio of the Squeeze-and-Excitation layer.
      init_stochastic_depth_rate: A `float` of initial stochastic depth rate.
      activation: A `str` name of the activation function.
      use_sync_bn: If True, use synchronized batch normalization.
      norm_momentum: A `float` of normalization momentum for the moving average.
      norm_epsilon: A small `float` added to variance to avoid dividing by zero.
      kernel_initializer: A str for kernel initializer of convolutional layers.
      kernel_regularizer: A `tf.keras.regularizers.Regularizer` object for
        Conv2D. Default to None.
      bias_regularizer: A `tf.keras.regularizers.Regularizer` object for Conv2D.
        Default to None.
      **kwargs: Additional keyword arguments to be passed.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
151
152
153
    """
    self._model_id = model_id
    self._input_specs = input_specs
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
154
    self._depth_multiplier = depth_multiplier
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
155
    self._stem_type = stem_type
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
156
157
    self._resnetd_shortcut = resnetd_shortcut
    self._replace_stem_max_pool = replace_stem_max_pool
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
158
    self._se_ratio = se_ratio
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
159
    self._init_stochastic_depth_rate = init_stochastic_depth_rate
Abdullah Rashwan's avatar
Abdullah Rashwan committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
    self._use_sync_bn = use_sync_bn
    self._activation = activation
    self._norm_momentum = norm_momentum
    self._norm_epsilon = norm_epsilon
    if use_sync_bn:
      self._norm = layers.experimental.SyncBatchNormalization
    else:
      self._norm = layers.BatchNormalization
    self._kernel_initializer = kernel_initializer
    self._kernel_regularizer = kernel_regularizer
    self._bias_regularizer = bias_regularizer

    if tf.keras.backend.image_data_format() == 'channels_last':
      bn_axis = -1
    else:
      bn_axis = 1

    # Build ResNet.
    inputs = tf.keras.Input(shape=input_specs.shape[1:])

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
180
181
    if stem_type == 'v0':
      x = layers.Conv2D(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
182
          filters=int(64 * self._depth_multiplier),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
183
184
185
186
187
188
189
190
191
192
193
          kernel_size=7,
          strides=2,
          use_bias=False,
          padding='same',
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer)(
              inputs)
      x = self._norm(
          axis=bn_axis, momentum=norm_momentum, epsilon=norm_epsilon)(
              x)
194
      x = tf_utils.get_activation(activation, use_keras_layer=True)(x)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
195
196
    elif stem_type == 'v1':
      x = layers.Conv2D(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
197
          filters=int(32 * self._depth_multiplier),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
198
199
200
201
202
203
204
205
206
207
208
          kernel_size=3,
          strides=2,
          use_bias=False,
          padding='same',
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer)(
              inputs)
      x = self._norm(
          axis=bn_axis, momentum=norm_momentum, epsilon=norm_epsilon)(
              x)
209
      x = tf_utils.get_activation(activation, use_keras_layer=True)(x)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
210
      x = layers.Conv2D(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
211
          filters=int(32 * self._depth_multiplier),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
212
213
214
215
216
217
218
219
220
221
222
          kernel_size=3,
          strides=1,
          use_bias=False,
          padding='same',
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer)(
              x)
      x = self._norm(
          axis=bn_axis, momentum=norm_momentum, epsilon=norm_epsilon)(
              x)
223
      x = tf_utils.get_activation(activation, use_keras_layer=True)(x)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
224
      x = layers.Conv2D(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
225
          filters=int(64 * self._depth_multiplier),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
226
227
228
229
230
231
232
233
234
235
236
          kernel_size=3,
          strides=1,
          use_bias=False,
          padding='same',
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer)(
              x)
      x = self._norm(
          axis=bn_axis, momentum=norm_momentum, epsilon=norm_epsilon)(
              x)
237
      x = tf_utils.get_activation(activation, use_keras_layer=True)(x)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
238
239
240
    else:
      raise ValueError('Stem type {} not supported.'.format(stem_type))

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
    if replace_stem_max_pool:
      x = layers.Conv2D(
          filters=int(64 * self._depth_multiplier),
          kernel_size=3,
          strides=2,
          use_bias=False,
          padding='same',
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer)(
              x)
      x = self._norm(
          axis=bn_axis, momentum=norm_momentum, epsilon=norm_epsilon)(
              x)
255
      x = tf_utils.get_activation(activation, use_keras_layer=True)(x)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
256
257
    else:
      x = layers.MaxPool2D(pool_size=3, strides=2, padding='same')(x)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
258
259
260
261
262
263
264
265
266
267
268

    endpoints = {}
    for i, spec in enumerate(RESNET_SPECS[model_id]):
      if spec[0] == 'residual':
        block_fn = nn_blocks.ResidualBlock
      elif spec[0] == 'bottleneck':
        block_fn = nn_blocks.BottleneckBlock
      else:
        raise ValueError('Block fn `{}` is not supported.'.format(spec[0]))
      x = self._block_group(
          inputs=x,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
269
          filters=int(spec[1] * self._depth_multiplier),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
270
271
272
          strides=(1 if i == 0 else 2),
          block_fn=block_fn,
          block_repeats=spec[2],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
273
274
          stochastic_depth_drop_rate=nn_layers.get_stochastic_depth_rate(
              self._init_stochastic_depth_rate, i + 2, 5),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
275
          name='block_group_l{}'.format(i + 2))
Abdullah Rashwan's avatar
Abdullah Rashwan committed
276
      endpoints[str(i + 2)] = x
Abdullah Rashwan's avatar
Abdullah Rashwan committed
277
278
279
280
281
282

    self._output_specs = {l: endpoints[l].get_shape() for l in endpoints}

    super(ResNet, self).__init__(inputs=inputs, outputs=endpoints, **kwargs)

  def _block_group(self,
Fan Yang's avatar
Fan Yang committed
283
284
285
286
287
288
289
                   inputs: tf.Tensor,
                   filters: int,
                   strides: int,
                   block_fn: Callable[..., tf.keras.layers.Layer],
                   block_repeats: int = 1,
                   stochastic_depth_drop_rate: float = 0.0,
                   name: str = 'block_group'):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
290
291
292
    """Creates one group of blocks for the ResNet model.

    Args:
Fan Yang's avatar
Fan Yang committed
293
294
295
296
297
298
299
300
301
302
303
      inputs: A `tf.Tensor` of size `[batch, channels, height, width]`.
      filters: An `int` number of filters for the first convolution of the
        layer.
      strides: An `int` stride to use for the first convolution of the layer.
        If greater than 1, this layer will downsample the input.
      block_fn: The type of block group. Either `nn_blocks.ResidualBlock` or
        `nn_blocks.BottleneckBlock`.
      block_repeats: An `int` number of blocks contained in the layer.
      stochastic_depth_drop_rate: A `float` of drop rate of the current block
        group.
      name: A `str` name for the block.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
304
305

    Returns:
Fan Yang's avatar
Fan Yang committed
306
      The output `tf.Tensor` of the block layer.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
307
308
309
310
311
    """
    x = block_fn(
        filters=filters,
        strides=strides,
        use_projection=True,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
312
        stochastic_depth_drop_rate=stochastic_depth_drop_rate,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
313
        se_ratio=self._se_ratio,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
314
        resnetd_shortcut=self._resnetd_shortcut,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
315
316
317
318
319
320
321
322
323
324
325
326
327
328
        kernel_initializer=self._kernel_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activation=self._activation,
        use_sync_bn=self._use_sync_bn,
        norm_momentum=self._norm_momentum,
        norm_epsilon=self._norm_epsilon)(
            inputs)

    for _ in range(1, block_repeats):
      x = block_fn(
          filters=filters,
          strides=1,
          use_projection=False,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
329
          stochastic_depth_drop_rate=stochastic_depth_drop_rate,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
330
          se_ratio=self._se_ratio,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
331
          resnetd_shortcut=self._resnetd_shortcut,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
332
333
334
335
336
337
338
339
340
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer,
          activation=self._activation,
          use_sync_bn=self._use_sync_bn,
          norm_momentum=self._norm_momentum,
          norm_epsilon=self._norm_epsilon)(
              x)

341
    return tf.keras.layers.Activation('linear', name=name)(x)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
342
343
344
345

  def get_config(self):
    config_dict = {
        'model_id': self._model_id,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
346
        'depth_multiplier': self._depth_multiplier,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
347
        'stem_type': self._stem_type,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
348
349
        'resnetd_shortcut': self._resnetd_shortcut,
        'replace_stem_max_pool': self._replace_stem_max_pool,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
350
        'activation': self._activation,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
351
        'se_ratio': self._se_ratio,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
352
        'init_stochastic_depth_rate': self._init_stochastic_depth_rate,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
        'use_sync_bn': self._use_sync_bn,
        'norm_momentum': self._norm_momentum,
        'norm_epsilon': self._norm_epsilon,
        'kernel_initializer': self._kernel_initializer,
        'kernel_regularizer': self._kernel_regularizer,
        'bias_regularizer': self._bias_regularizer,
    }
    return config_dict

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)

  @property
  def output_specs(self):
    """A dict of {level: TensorShape} pairs for the model output."""
    return self._output_specs
Yeqing Li's avatar
Yeqing Li committed
370
371
372
373
374


@factory.register_backbone_builder('resnet')
def build_resnet(
    input_specs: tf.keras.layers.InputSpec,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
375
376
    backbone_config: hyperparams.Config,
    norm_activation_config: hyperparams.Config,
Yeqing Li's avatar
Yeqing Li committed
377
    l2_regularizer: tf.keras.regularizers.Regularizer = None) -> tf.keras.Model:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
378
  """Builds ResNet backbone from a config."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
379
380
  backbone_type = backbone_config.type
  backbone_cfg = backbone_config.get()
Yeqing Li's avatar
Yeqing Li committed
381
382
383
384
385
386
  assert backbone_type == 'resnet', (f'Inconsistent backbone type '
                                     f'{backbone_type}')

  return ResNet(
      model_id=backbone_cfg.model_id,
      input_specs=input_specs,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
387
      depth_multiplier=backbone_cfg.depth_multiplier,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
388
      stem_type=backbone_cfg.stem_type,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
389
390
      resnetd_shortcut=backbone_cfg.resnetd_shortcut,
      replace_stem_max_pool=backbone_cfg.replace_stem_max_pool,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
391
      se_ratio=backbone_cfg.se_ratio,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
392
      init_stochastic_depth_rate=backbone_cfg.stochastic_depth_drop_rate,
Yeqing Li's avatar
Yeqing Li committed
393
394
395
396
397
      activation=norm_activation_config.activation,
      use_sync_bn=norm_activation_config.use_sync_bn,
      norm_momentum=norm_activation_config.norm_momentum,
      norm_epsilon=norm_activation_config.norm_epsilon,
      kernel_regularizer=l2_regularizer)