question_answering_test.py 9.77 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for official.nlp.tasks.question_answering."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
17
18
import itertools
import json
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
19
import os
Hongkun Yu's avatar
Hongkun Yu committed
20

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
21
from absl.testing import parameterized
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
22
23
24
25
import tensorflow as tf

from official.nlp.configs import bert
from official.nlp.configs import encoders
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
26
from official.nlp.data import question_answering_dataloader
Hongkun Yu's avatar
Hongkun Yu committed
27
from official.nlp.tasks import masked_lm
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
28
29
30
from official.nlp.tasks import question_answering


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
31
class QuestionAnsweringTaskTest(tf.test.TestCase, parameterized.TestCase):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
32
33
34

  def setUp(self):
    super(QuestionAnsweringTaskTest, self).setUp()
Hongkun Yu's avatar
Hongkun Yu committed
35
36
    self._encoder_config = encoders.EncoderConfig(
        bert=encoders.BertEncoderConfig(vocab_size=30522, num_layers=1))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
37
    self._train_data_config = question_answering_dataloader.QADataConfig(
Hongkun Yu's avatar
Hongkun Yu committed
38
        input_path="dummy", seq_length=128, global_batch_size=1)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
39

Hongkun Yu's avatar
Hongkun Yu committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
    val_data = {
        "version":
            "1.1",
        "data": [{
            "paragraphs": [{
                "context":
                    "Sky is blue.",
                "qas": [{
                    "question":
                        "What is blue?",
                    "id":
                        "1234",
                    "answers": [{
                        "text": "Sky",
                        "answer_start": 0
                    }, {
                        "text": "Sky",
                        "answer_start": 0
                    }, {
                        "text": "Sky",
                        "answer_start": 0
                    }]
                }]
            }]
        }]
    }
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
66
67
68
69
70
71
72
73
74
    self._val_input_path = os.path.join(self.get_temp_dir(), "val_data.json")
    with tf.io.gfile.GFile(self._val_input_path, "w") as writer:
      writer.write(json.dumps(val_data, indent=4) + "\n")

    self._test_vocab = os.path.join(self.get_temp_dir(), "vocab.txt")
    with tf.io.gfile.GFile(self._test_vocab, "w") as writer:
      writer.write("[PAD]\n[UNK]\n[CLS]\n[SEP]\n[MASK]\nsky\nis\nblue\n")

  def _get_validation_data_config(self, version_2_with_negative=False):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
75
76
    return question_answering_dataloader.QADataConfig(
        is_training=False,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
77
78
79
80
81
82
83
84
        input_path=self._val_input_path,
        input_preprocessed_data_path=self.get_temp_dir(),
        seq_length=128,
        global_batch_size=1,
        version_2_with_negative=version_2_with_negative,
        vocab_file=self._test_vocab,
        tokenization="WordPiece",
        do_lower_case=True)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
85
86
87
88
89

  def _run_task(self, config):
    task = question_answering.QuestionAnsweringTask(config)
    model = task.build_model()
    metrics = task.build_metrics()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
90
    task.initialize(model)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
91

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
92
93
    train_dataset = task.build_inputs(config.train_data)
    train_iterator = iter(train_dataset)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
94
    optimizer = tf.keras.optimizers.SGD(lr=0.1)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
95
96
97
98
99
    task.train_step(next(train_iterator), model, optimizer, metrics=metrics)

    val_dataset = task.build_inputs(config.validation_data)
    val_iterator = iter(val_dataset)
    logs = task.validation_step(next(val_iterator), model, metrics=metrics)
100
101
    # Mock that `logs` is from one replica.
    logs = {x: (logs[x],) for x in logs}
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
102
103
104
    logs = task.aggregate_logs(step_outputs=logs)
    metrics = task.reduce_aggregated_logs(logs)
    self.assertIn("final_f1", metrics)
Chen Chen's avatar
Chen Chen committed
105
    model.save(os.path.join(self.get_temp_dir(), "saved_model"))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
106

Hongkun Yu's avatar
Hongkun Yu committed
107
108
109
110
111
  @parameterized.parameters(
      itertools.product(
          (False, True),
          ("WordPiece", "SentencePiece"),
      ))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
112
  def test_task(self, version_2_with_negative, tokenization):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
113
    # Saves a checkpoint.
Hongkun Yu's avatar
Hongkun Yu committed
114
    pretrain_cfg = bert.PretrainerConfig(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
115
116
117
118
119
        encoder=self._encoder_config,
        cls_heads=[
            bert.ClsHeadConfig(
                inner_dim=10, num_classes=3, name="next_sentence")
        ])
Hongkun Yu's avatar
Hongkun Yu committed
120
    pretrain_model = masked_lm.MaskedLMTask(None).build_model(pretrain_cfg)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
121
122
123
124
125
126
    ckpt = tf.train.Checkpoint(
        model=pretrain_model, **pretrain_model.checkpoint_items)
    saved_path = ckpt.save(self.get_temp_dir())

    config = question_answering.QuestionAnsweringConfig(
        init_checkpoint=saved_path,
Hongkun Yu's avatar
Hongkun Yu committed
127
        model=question_answering.ModelConfig(encoder=self._encoder_config),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
128
129
130
131
        train_data=self._train_data_config,
        validation_data=self._get_validation_data_config(
            version_2_with_negative))
    self._run_task(config)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
132
133

  def _export_bert_tfhub(self):
134
135
136
137
138
139
140
    encoder = encoders.build_encoder(
        encoders.EncoderConfig(
            bert=encoders.BertEncoderConfig(vocab_size=30522, num_layers=1)))
    encoder_inputs_dict = {x.name: x for x in encoder.inputs}
    encoder_output_dict = encoder(encoder_inputs_dict)
    core_model = tf.keras.Model(
        inputs=encoder_inputs_dict, outputs=encoder_output_dict)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
141
    hub_destination = os.path.join(self.get_temp_dir(), "hub")
142
    core_model.save(hub_destination, include_optimizer=False, save_format="tf")
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
143
144
145
146
147
148
    return hub_destination

  def test_task_with_hub(self):
    hub_module_url = self._export_bert_tfhub()
    config = question_answering.QuestionAnsweringConfig(
        hub_module_url=hub_module_url,
Hongkun Yu's avatar
Hongkun Yu committed
149
        model=question_answering.ModelConfig(encoder=self._encoder_config),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
150
151
        train_data=self._train_data_config,
        validation_data=self._get_validation_data_config())
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
152
153
    self._run_task(config)

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
  @parameterized.named_parameters(("squad1", False), ("squad2", True))
  def test_predict(self, version_2_with_negative):
    validation_data = self._get_validation_data_config(
        version_2_with_negative=version_2_with_negative)

    config = question_answering.QuestionAnsweringConfig(
        model=question_answering.ModelConfig(encoder=self._encoder_config),
        train_data=self._train_data_config,
        validation_data=validation_data)
    task = question_answering.QuestionAnsweringTask(config)
    model = task.build_model()

    all_predictions, all_nbest, scores_diff = question_answering.predict(
        task, validation_data, model)
    self.assertLen(all_predictions, 1)
    self.assertLen(all_nbest, 1)
    if version_2_with_negative:
      self.assertLen(scores_diff, 1)
    else:
      self.assertEmpty(scores_diff)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
175

Allen Wang's avatar
Allen Wang committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
class XLNetQuestionAnsweringTaskTest(tf.test.TestCase, parameterized.TestCase):

  def setUp(self):
    super(XLNetQuestionAnsweringTaskTest, self).setUp()
    self._encoder_config = encoders.EncoderConfig(
        type="xlnet",
        xlnet=encoders.XLNetEncoderConfig(vocab_size=30522, num_layers=1))
    self._train_data_config = question_answering_dataloader.QADataConfig(
        input_path="dummy", seq_length=128,
        global_batch_size=2, xlnet_format=True)

    val_data = {
        "version":
            "2.0",
        "data": [{
            "paragraphs": [{
                "context":
                    "Sky is blue.",
                "qas": [{
                    "question":
                        "What is blue?",
                    "id":
                        "1234",
                    "answers": [{
                        "text": "Sky",
                        "answer_start": 0
                    }, {
                        "text": "Sky",
                        "answer_start": 0
                    }, {
                        "text": "Sky",
                        "answer_start": 0
                    }]
                }]
            }]
        }]
    }
    self._val_input_path = os.path.join(self.get_temp_dir(), "val_data.json")
    with tf.io.gfile.GFile(self._val_input_path, "w") as writer:
      writer.write(json.dumps(val_data, indent=4) + "\n")

    self._test_vocab = os.path.join(self.get_temp_dir(), "vocab.txt")
    with tf.io.gfile.GFile(self._test_vocab, "w") as writer:
      writer.write("[PAD]\n[UNK]\n[CLS]\n[SEP]\n[MASK]\nsky\nis\nblue\n")

  def _get_validation_data_config(self):
    return question_answering_dataloader.QADataConfig(
        is_training=False,
        input_path=self._val_input_path,
        input_preprocessed_data_path=self.get_temp_dir(),
        seq_length=128,
        global_batch_size=2,
        version_2_with_negative=True,
        vocab_file=self._test_vocab,
        tokenization="WordPiece",
        do_lower_case=True,
        xlnet_format=True)

  def _run_task(self, config):
    task = question_answering.XLNetQuestionAnsweringTask(config)
    model = task.build_model()
    metrics = task.build_metrics()
    task.initialize(model)

    train_dataset = task.build_inputs(config.train_data)
    train_iterator = iter(train_dataset)
    optimizer = tf.keras.optimizers.SGD(lr=0.1)
    task.train_step(next(train_iterator), model, optimizer, metrics=metrics)

    val_dataset = task.build_inputs(config.validation_data)
    val_iterator = iter(val_dataset)
    logs = task.validation_step(next(val_iterator), model, metrics=metrics)
    # Mock that `logs` is from one replica.
    logs = {x: (logs[x],) for x in logs}
    logs = task.aggregate_logs(step_outputs=logs)
    metrics = task.reduce_aggregated_logs(logs)
    self.assertIn("final_f1", metrics)

  def test_task(self):
    config = question_answering.XLNetQuestionAnsweringConfig(
        init_checkpoint="",
        n_best_size=5,
        model=question_answering.ModelConfig(encoder=self._encoder_config),
        train_data=self._train_data_config,
        validation_data=self._get_validation_data_config())
    self._run_task(config)


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
264
265
if __name__ == "__main__":
  tf.test.main()