misc.py 9.94 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Misc for Transformer."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Toby Boyd's avatar
Toby Boyd committed
21
# pylint: disable=g-bad-import-order
Hongkun Yu's avatar
Hongkun Yu committed
22

23
from absl import flags
Toby Boyd's avatar
Toby Boyd committed
24
import tensorflow as tf
25

26
from official.nlp.transformer import model_params
27
from official.utils.flags import core as flags_core
Toby Boyd's avatar
Toby Boyd committed
28
29
30
from official.utils.misc import keras_utils

FLAGS = flags.FLAGS
31
32

PARAMS_MAP = {
Toby Boyd's avatar
Toby Boyd committed
33
34
35
    'tiny': model_params.TINY_PARAMS,
    'base': model_params.BASE_PARAMS,
    'big': model_params.BIG_PARAMS,
36
37
38
39
40
41
}


def get_model_params(param_set, num_gpus):
  """Gets predefined model params."""
  if num_gpus > 1:
Toby Boyd's avatar
Toby Boyd committed
42
    if param_set == 'big':
43
      return model_params.BIG_MULTI_GPU_PARAMS.copy()
Toby Boyd's avatar
Toby Boyd committed
44
    elif param_set == 'base':
45
46
      return model_params.BASE_MULTI_GPU_PARAMS.copy()
    else:
Toby Boyd's avatar
Toby Boyd committed
47
      raise ValueError('Not valid params: param_set={} num_gpus={}'.format(
48
49
50
51
52
53
54
          param_set, num_gpus))

  return PARAMS_MAP[param_set].copy()


def define_transformer_flags():
  """Add flags and flag validators for running transformer_main."""
55
  # Add common flags (data_dir, model_dir, etc.).
56
  flags_core.define_base(num_gpu=True, distribution_strategy=True)
57
58
59
60
61
62
  flags_core.define_performance(
      num_parallel_calls=True,
      inter_op=False,
      intra_op=False,
      synthetic_data=True,
      max_train_steps=False,
63
64
      dtype=True,
      loss_scale=True,
Toby Boyd's avatar
Toby Boyd committed
65
      all_reduce_alg=True,
66
67
68
      num_packs=True,
      tf_gpu_thread_mode=True,
      datasets_num_private_threads=True,
69
      enable_xla=True,
Hongkun Yu's avatar
Hongkun Yu committed
70
      fp16_implementation=True)
Toby Boyd's avatar
Toby Boyd committed
71

72
73
74
  flags_core.define_benchmark()
  flags_core.define_device(tpu=True)

Toby Boyd's avatar
Toby Boyd committed
75
  flags.DEFINE_integer(
Hongkun Yu's avatar
Hongkun Yu committed
76
77
78
      name='train_steps',
      short_name='ts',
      default=300000,
Toby Boyd's avatar
Toby Boyd committed
79
80
      help=flags_core.help_wrap('The number of steps used to train.'))
  flags.DEFINE_integer(
Hongkun Yu's avatar
Hongkun Yu committed
81
82
83
      name='steps_between_evals',
      short_name='sbe',
      default=5000,
Toby Boyd's avatar
Toby Boyd committed
84
85
86
      help=flags_core.help_wrap(
          'The Number of training steps to run between evaluations. This is '
          'used if --train_steps is defined.'))
87
  flags.DEFINE_boolean(
Hongkun Yu's avatar
Hongkun Yu committed
88
89
      name='enable_time_history',
      default=True,
90
      help='Whether to enable TimeHistory callback.')
Toby Boyd's avatar
Toby Boyd committed
91
  flags.DEFINE_boolean(
Hongkun Yu's avatar
Hongkun Yu committed
92
93
      name='enable_tensorboard',
      default=False,
Toby Boyd's avatar
Toby Boyd committed
94
      help='Whether to enable Tensorboard callback.')
95
  flags.DEFINE_boolean(
Hongkun Yu's avatar
Hongkun Yu committed
96
97
      name='enable_metrics_in_training',
      default=False,
98
      help='Whether to enable metrics during training.')
99
100
101
102
  flags.DEFINE_boolean(
      name='enable_mlir_bridge',
      default=False,
      help='Whether to enable the TF to XLA bridge.')
Toby Boyd's avatar
Toby Boyd committed
103
  # Set flags from the flags_core module as 'key flags' so they're listed when
104
105
106
107
108
109
  # the '-h' flag is used. Without this line, the flags defined above are
  # only shown in the full `--helpful` help text.
  flags.adopt_module_key_flags(flags_core)

  # Add transformer-specific flags
  flags.DEFINE_enum(
Hongkun Yu's avatar
Hongkun Yu committed
110
111
112
      name='param_set',
      short_name='mp',
      default='big',
113
114
      enum_values=PARAMS_MAP.keys(),
      help=flags_core.help_wrap(
Toby Boyd's avatar
Toby Boyd committed
115
116
117
118
119
120
          'Parameter set to use when creating and training the model. The '
          'parameters define the input shape (batch size and max length), '
          'model configuration (size of embedding, # of hidden layers, etc.), '
          'and various other settings. The big parameter set increases the '
          'default batch size, embedding/hidden size, and filter size. For a '
          'complete list of parameters, please see model/model_params.py.'))
121
122

  flags.DEFINE_bool(
Hongkun Yu's avatar
Hongkun Yu committed
123
124
125
      name='static_batch',
      short_name='sb',
      default=False,
126
      help=flags_core.help_wrap(
Toby Boyd's avatar
Toby Boyd committed
127
128
129
130
131
132
          'Whether the batches in the dataset should have static shapes. In '
          'general, this setting should be False. Dynamic shapes allow the '
          'inputs to be grouped so that the number of padding tokens is '
          'minimized, and helps model training. In cases where the input shape '
          'must be static (e.g. running on TPU), this setting will be ignored '
          'and static batching will always be used.'))
133
  flags.DEFINE_integer(
Hongkun Yu's avatar
Hongkun Yu committed
134
135
136
      name='max_length',
      short_name='ml',
      default=256,
137
138
139
140
      help=flags_core.help_wrap(
          'Max sentence length for Transformer. Default is 256. Note: Usually '
          'it is more effective to use a smaller max length if static_batch is '
          'enabled, e.g. 64.'))
141
142
143

  # Flags for training with steps (may be used for debugging)
  flags.DEFINE_integer(
Hongkun Yu's avatar
Hongkun Yu committed
144
145
146
      name='validation_steps',
      short_name='vs',
      default=64,
Toby Boyd's avatar
Toby Boyd committed
147
      help=flags_core.help_wrap('The number of steps used in validation.'))
148
149
150

  # BLEU score computation
  flags.DEFINE_string(
Hongkun Yu's avatar
Hongkun Yu committed
151
152
153
      name='bleu_source',
      short_name='bls',
      default=None,
154
      help=flags_core.help_wrap(
Toby Boyd's avatar
Toby Boyd committed
155
156
          'Path to source file containing text translate when calculating the '
          'official BLEU score. Both --bleu_source and --bleu_ref must be set. '
Hongkun Yu's avatar
Hongkun Yu committed
157
      ))
158
  flags.DEFINE_string(
Hongkun Yu's avatar
Hongkun Yu committed
159
160
161
      name='bleu_ref',
      short_name='blr',
      default=None,
162
      help=flags_core.help_wrap(
Toby Boyd's avatar
Toby Boyd committed
163
164
          'Path to source file containing text translate when calculating the '
          'official BLEU score. Both --bleu_source and --bleu_ref must be set. '
Hongkun Yu's avatar
Hongkun Yu committed
165
      ))
166
  flags.DEFINE_string(
Hongkun Yu's avatar
Hongkun Yu committed
167
168
169
      name='vocab_file',
      short_name='vf',
      default=None,
170
      help=flags_core.help_wrap(
Toby Boyd's avatar
Toby Boyd committed
171
172
173
          'Path to subtoken vocabulary file. If data_download.py was used to '
          'download and encode the training data, look in the data_dir to find '
          'the vocab file.'))
174
  flags.DEFINE_string(
Hongkun Yu's avatar
Hongkun Yu committed
175
176
      name='mode',
      default='train',
Toby Boyd's avatar
Toby Boyd committed
177
      help=flags_core.help_wrap('mode: train, eval, or predict'))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
178
179
180
181
182
  flags.DEFINE_bool(
      name='use_ctl',
      default=False,
      help=flags_core.help_wrap(
          'Whether the model runs with custom training loop.'))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
  flags.DEFINE_integer(
      name='decode_batch_size',
      default=32,
      help=flags_core.help_wrap(
          'Global batch size used for Transformer autoregressive decoding on '
          'TPU.'))
  flags.DEFINE_integer(
      name='decode_max_length',
      default=97,
      help=flags_core.help_wrap(
          'Max sequence length of the decode/eval data. This is used by '
          'Transformer autoregressive decoding on TPU to have minimum '
          'paddings.'))
  flags.DEFINE_bool(
      name='padded_decode',
      default=False,
      help=flags_core.help_wrap(
          'Whether the autoregressive decoding runs with input data padded to '
          'the decode_max_length. For TPU/XLA-GPU runs, this flag has to be '
          'set due the static shape requirement. Although CPU/GPU could also '
          'use padded_decode, it has not been tested. In addition, this method '
          'will introduce unnecessary overheads which grow quadratically with '
          'the max sequence length.'))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
206
207
208
209
210
211
  flags.DEFINE_bool(
      name='enable_checkpointing',
      default=True,
      help=flags_core.help_wrap(
          'Whether to do checkpointing during training. When running under '
          'benchmark harness, we will avoid checkpointing.'))
212

Hongkun Yu's avatar
Hongkun Yu committed
213
214
215
216
  flags_core.set_defaults(
      data_dir='/tmp/translate_ende',
      model_dir='/tmp/transformer_model',
      batch_size=None)
217
218
219

  # pylint: disable=unused-variable
  @flags.multi_flags_validator(
Toby Boyd's avatar
Toby Boyd committed
220
221
      ['bleu_source', 'bleu_ref'],
      message='Both or neither --bleu_source and --bleu_ref must be defined.')
222
  def _check_bleu_files(flags_dict):
Toby Boyd's avatar
Toby Boyd committed
223
224
    return (flags_dict['bleu_source'] is None) == (
        flags_dict['bleu_ref'] is None)
225
226

  @flags.multi_flags_validator(
Toby Boyd's avatar
Toby Boyd committed
227
228
      ['bleu_source', 'bleu_ref', 'vocab_file'],
      message='--vocab_file must be defined if --bleu_source and --bleu_ref '
Hongkun Yu's avatar
Hongkun Yu committed
229
      'are defined.')
230
  def _check_bleu_vocab_file(flags_dict):
Toby Boyd's avatar
Toby Boyd committed
231
232
    if flags_dict['bleu_source'] and flags_dict['bleu_ref']:
      return flags_dict['vocab_file'] is not None
233
    return True
Hongkun Yu's avatar
Hongkun Yu committed
234

235
236
  # pylint: enable=unused-variable

Toby Boyd's avatar
Toby Boyd committed
237

238
def get_callbacks():
Toby Boyd's avatar
Toby Boyd committed
239
240
  """Returns common callbacks."""
  callbacks = []
241
  if FLAGS.enable_time_history:
Will Cromar's avatar
Will Cromar committed
242
243
244
    time_callback = keras_utils.TimeHistory(
        FLAGS.batch_size,
        FLAGS.log_steps,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
245
        logdir=FLAGS.model_dir if FLAGS.enable_tensorboard else None)
246
    callbacks.append(time_callback)
Toby Boyd's avatar
Toby Boyd committed
247
248
249
250
251
252
253
254
255

  if FLAGS.enable_tensorboard:
    tensorboard_callback = tf.keras.callbacks.TensorBoard(
        log_dir=FLAGS.model_dir)
    callbacks.append(tensorboard_callback)

  return callbacks


Tayo Oguntebi's avatar
Tayo Oguntebi committed
256
257
def update_stats(history, stats, callbacks):
  """Normalizes and updates dictionary of stats.
Toby Boyd's avatar
Toby Boyd committed
258
259
260

  Args:
    history: Results of the training step.
Tayo Oguntebi's avatar
Tayo Oguntebi committed
261
    stats: Dict with pre-existing training stats.
Toby Boyd's avatar
Toby Boyd committed
262
263
264
265
266
267
268
    callbacks: a list of callbacks which might include a time history callback
      used during keras.fit.
  """

  if history and history.history:
    train_hist = history.history
    # Gets final loss from training.
269
    stats['loss'] = float(train_hist['loss'][-1])
Toby Boyd's avatar
Toby Boyd committed
270
271

  if not callbacks:
Tayo Oguntebi's avatar
Tayo Oguntebi committed
272
    return
Toby Boyd's avatar
Toby Boyd committed
273
274
275
276
277
278
279
280
281
282

  # Look for the time history callback which was used during keras.fit
  for callback in callbacks:
    if isinstance(callback, keras_utils.TimeHistory):
      timestamp_log = callback.timestamp_log
      stats['step_timestamp_log'] = timestamp_log
      stats['train_finish_time'] = callback.train_finish_time
      if len(timestamp_log) > 1:
        stats['avg_exp_per_second'] = (
            callback.batch_size * callback.log_steps *
Hongkun Yu's avatar
Hongkun Yu committed
283
            (len(callback.timestamp_log) - 1) /
Toby Boyd's avatar
Toby Boyd committed
284
            (timestamp_log[-1].timestamp - timestamp_log[0].timestamp))