bert_benchmark.py 13.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes BERT benchmarks and accuracy tests."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
21
import functools
22
import json
23
import math
24
25
26
import os
import time

27
# pylint: disable=g-bad-import-order
28
29
from absl import flags
from absl.testing import flagsaver
30
import tensorflow as tf
31
# pylint: enable=g-bad-import-order
32

33
from official.benchmark import bert_benchmark_utils as benchmark_utils
34
from official.nlp import bert_modeling as modeling
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
35
from official.nlp.bert import input_pipeline
36
from official.nlp.bert import run_classifier
37
from official.utils.misc import distribution_utils
38
39

# pylint: disable=line-too-long
40
PRETRAINED_CHECKPOINT_PATH = 'gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16/bert_model.ckpt'
41
42
43
CLASSIFIER_TRAIN_DATA_PATH = 'gs://tf-perfzero-data/bert/classification/mrpc_train.tf_record'
CLASSIFIER_EVAL_DATA_PATH = 'gs://tf-perfzero-data/bert/classification/mrpc_eval.tf_record'
CLASSIFIER_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/classification/mrpc_meta_data'
44
MODEL_CONFIG_FILE_PATH = 'gs://cloud-tpu-checkpoints/bert/tf_20/uncased_L-24_H-1024_A-16/bert_config'
45
46
# pylint: enable=line-too-long

David Chen's avatar
David Chen committed
47
TMP_DIR = os.getenv('TMPDIR')
48
49
50
FLAGS = flags.FLAGS


davidmochen's avatar
davidmochen committed
51
class BertClassifyBenchmarkBase(benchmark_utils.BertBenchmarkBase):
52
53
54
  """Base class to hold methods common to test classes in the module."""

  def __init__(self, output_dir=None):
55
    super(BertClassifyBenchmarkBase, self).__init__(output_dir)
56
57
58
    self.num_epochs = None
    self.num_steps_per_epoch = None

59
  @flagsaver.flagsaver
60
  def _run_bert_classifier(self, callbacks=None, use_ds=True):
61
    """Starts BERT classification task."""
62
63
64
    with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
      input_meta_data = json.loads(reader.read().decode('utf-8'))

65
    bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
66
67
68
69
70
71
72
    epochs = self.num_epochs if self.num_epochs else FLAGS.num_train_epochs
    if self.num_steps_per_epoch:
      steps_per_epoch = self.num_steps_per_epoch
    else:
      train_data_size = input_meta_data['train_data_size']
      steps_per_epoch = int(train_data_size / FLAGS.train_batch_size)
    warmup_steps = int(epochs * steps_per_epoch * 0.1)
73
74
75
    eval_steps = int(
        math.ceil(input_meta_data['eval_data_size'] / FLAGS.eval_batch_size))
    strategy = distribution_utils.get_distribution_strategy(
76
77
78
        distribution_strategy='mirrored' if use_ds else 'off',
        num_gpus=self.num_gpus)

79
    steps_per_loop = 1
80

Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
81
82
83
84
85
86
87
88
89
90
91
92
93
    max_seq_length = input_meta_data['max_seq_length']
    train_input_fn = functools.partial(
        input_pipeline.create_classifier_dataset,
        FLAGS.train_data_path,
        seq_length=max_seq_length,
        batch_size=FLAGS.train_batch_size)
    eval_input_fn = functools.partial(
        input_pipeline.create_classifier_dataset,
        FLAGS.eval_data_path,
        seq_length=max_seq_length,
        batch_size=FLAGS.eval_batch_size,
        is_training=False,
        drop_remainder=False)
94
    run_classifier.run_bert_classifier(
95
96
97
98
99
100
        strategy,
        bert_config,
        input_meta_data,
        FLAGS.model_dir,
        epochs,
        steps_per_epoch,
101
        steps_per_loop,
102
103
104
105
        eval_steps,
        warmup_steps,
        FLAGS.learning_rate,
        FLAGS.init_checkpoint,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
106
107
        train_input_fn,
        eval_input_fn,
108
109
110
        custom_callbacks=callbacks)


davidmochen's avatar
davidmochen committed
111
class BertClassifyBenchmarkReal(BertClassifyBenchmarkBase):
112
113
114
115
116
117
  """Short benchmark performance tests for BERT model.

  Tests BERT classification performance in different GPU configurations.
  The naming convention of below test cases follow
  `benchmark_(number of gpus)_gpu_(dataset type)` format.
  """
118

David Chen's avatar
David Chen committed
119
  def __init__(self, output_dir=TMP_DIR, **kwargs):
120
121
    super(BertClassifyBenchmarkReal, self).__init__(output_dir=output_dir)

122
123
124
125
    self.train_data_path = CLASSIFIER_TRAIN_DATA_PATH
    self.eval_data_path = CLASSIFIER_EVAL_DATA_PATH
    self.bert_config_file = MODEL_CONFIG_FILE_PATH
    self.input_meta_data_path = CLASSIFIER_INPUT_META_DATA_PATH
126

127
128
129
130
131
    # Since we only care about performance metrics, we limit
    # the number of training steps and epochs to prevent unnecessarily
    # long tests.
    self.num_steps_per_epoch = 110
    self.num_epochs = 1
132

133
134
135
  def _run_and_report_benchmark(self,
                                training_summary_path,
                                min_accuracy=0,
136
                                max_accuracy=1,
137
                                use_ds=True):
138
139
    """Starts BERT performance benchmark test."""
    start_time_sec = time.time()
140
    self._run_bert_classifier(callbacks=[self.timer_callback], use_ds=use_ds)
141
142
143
144
145
146
147
148
    wall_time_sec = time.time() - start_time_sec

    with tf.io.gfile.GFile(training_summary_path, 'rb') as reader:
      summary = json.loads(reader.read().decode('utf-8'))

    # Since we do not load from any pretrained checkpoints, we ignore all
    # accuracy metrics.
    summary.pop('eval_metrics', None)
149
    super(BertClassifyBenchmarkReal, self)._report_benchmark(
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
        stats=summary,
        wall_time_sec=wall_time_sec,
        min_accuracy=min_accuracy,
        max_accuracy=max_accuracy)

  def benchmark_1_gpu_mrpc(self):
    """Test BERT model performance with 1 GPU."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_mrpc')
    FLAGS.train_data_path = self.train_data_path
    FLAGS.eval_data_path = self.eval_data_path
    FLAGS.input_meta_data_path = self.input_meta_data_path
    FLAGS.bert_config_file = self.bert_config_file
    FLAGS.train_batch_size = 4
    FLAGS.eval_batch_size = 4

168
169
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
170
171
    self._run_and_report_benchmark(summary_path)

172
173
174
175
176
177
178
179
180
181
182
183
  def benchmark_1_gpu_mrpc_xla(self):
    """Test BERT model performance with 1 GPU."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_mrpc_xla')
    FLAGS.train_data_path = self.train_data_path
    FLAGS.eval_data_path = self.eval_data_path
    FLAGS.input_meta_data_path = self.input_meta_data_path
    FLAGS.bert_config_file = self.bert_config_file
    FLAGS.train_batch_size = 4
    FLAGS.eval_batch_size = 4
184
    FLAGS.enable_xla = True
185

186
187
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
188
    self._run_and_report_benchmark(summary_path)
189
190
191
192
193
194
195
196
197
198
199
200
201
202

  def benchmark_1_gpu_mrpc_no_dist_strat(self):
    """Test BERT model performance with 1 GPU, no distribution strategy."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_mrpc_no_dist_strat')
    FLAGS.train_data_path = self.train_data_path
    FLAGS.eval_data_path = self.eval_data_path
    FLAGS.input_meta_data_path = self.input_meta_data_path
    FLAGS.bert_config_file = self.bert_config_file
    FLAGS.train_batch_size = 4
    FLAGS.eval_batch_size = 4

203
204
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
205
206
    self._run_and_report_benchmark(summary_path, use_ds=False)

207
  def benchmark_2_gpu_mrpc(self):
208
209
210
211
    """Test BERT model performance with 2 GPUs."""

    self._setup()
    self.num_gpus = 2
212
    FLAGS.model_dir = self._get_model_dir('benchmark_2_gpu_mrpc')
213
214
215
216
217
218
    FLAGS.train_data_path = self.train_data_path
    FLAGS.eval_data_path = self.eval_data_path
    FLAGS.input_meta_data_path = self.input_meta_data_path
    FLAGS.bert_config_file = self.bert_config_file
    FLAGS.train_batch_size = 8
    FLAGS.eval_batch_size = 8
219

220
221
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    self._run_and_report_benchmark(summary_path)

  def benchmark_4_gpu_mrpc(self):
    """Test BERT model performance with 4 GPUs."""

    self._setup()
    self.num_gpus = 4
    FLAGS.model_dir = self._get_model_dir('benchmark_4_gpu_mrpc')
    FLAGS.train_data_path = self.train_data_path
    FLAGS.eval_data_path = self.eval_data_path
    FLAGS.input_meta_data_path = self.input_meta_data_path
    FLAGS.bert_config_file = self.bert_config_file
    FLAGS.train_batch_size = 16

236
237
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
238
239
240
    self._run_and_report_benchmark(summary_path)

  def benchmark_8_gpu_mrpc(self):
241
242
243
    """Test BERT model performance with 8 GPUs."""

    self._setup()
244
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_mrpc')
245
246
247
248
249
    FLAGS.train_data_path = self.train_data_path
    FLAGS.eval_data_path = self.eval_data_path
    FLAGS.input_meta_data_path = self.input_meta_data_path
    FLAGS.bert_config_file = self.bert_config_file

250
251
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
252
253
    self._run_and_report_benchmark(summary_path)

254
  def benchmark_1_gpu_amp_mrpc_no_dist_strat(self):
255
    """Performance for 1 GPU no DS with automatic mixed precision."""
256
257
    self._setup()
    self.num_gpus = 1
258
259
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_amp_mrpc_no_dist_strat')
260
261
262
263
264
265
266
267
268
    FLAGS.train_data_path = self.train_data_path
    FLAGS.eval_data_path = self.eval_data_path
    FLAGS.input_meta_data_path = self.input_meta_data_path
    FLAGS.bert_config_file = self.bert_config_file
    FLAGS.train_batch_size = 4
    FLAGS.eval_batch_size = 4
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'

269
270
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
271
272
273
    self._run_and_report_benchmark(summary_path, use_ds=False)

  def benchmark_8_gpu_amp_mrpc(self):
274
275
    """Test BERT model performance with 8 GPUs with automatic mixed precision.
    """
276
277
278
279
280
281
282
283
284
285
286
287
288

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp_mrpc')
    FLAGS.train_data_path = self.train_data_path
    FLAGS.eval_data_path = self.eval_data_path
    FLAGS.input_meta_data_path = self.input_meta_data_path
    FLAGS.bert_config_file = self.bert_config_file
    FLAGS.train_batch_size = 32
    FLAGS.eval_batch_size = 32
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'

289
290
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
291
    self._run_and_report_benchmark(summary_path, use_ds=False)
292
293


davidmochen's avatar
davidmochen committed
294
class BertClassifyAccuracy(BertClassifyBenchmarkBase):
295
296
297
298
299
300
  """Short accuracy test for BERT model.

  Tests BERT classification task model accuracy. The naming
  convention of below test cases follow
  `benchmark_(number of gpus)_gpu_(dataset type)` format.
  """
301

David Chen's avatar
David Chen committed
302
  def __init__(self, output_dir=TMP_DIR, **kwargs):
303
304
305
306
    self.train_data_path = CLASSIFIER_TRAIN_DATA_PATH
    self.eval_data_path = CLASSIFIER_EVAL_DATA_PATH
    self.bert_config_file = MODEL_CONFIG_FILE_PATH
    self.input_meta_data_path = CLASSIFIER_INPUT_META_DATA_PATH
307
    self.pretrained_checkpoint_path = PRETRAINED_CHECKPOINT_PATH
308

309
    super(BertClassifyAccuracy, self).__init__(output_dir=output_dir)
310

311
312
313
  def _run_and_report_benchmark(self,
                                training_summary_path,
                                min_accuracy=0.84,
314
                                max_accuracy=0.88):
315
316
    """Starts BERT accuracy benchmark test."""

317
    start_time_sec = time.time()
318
    self._run_bert_classifier(callbacks=[self.timer_callback])
319
320
    wall_time_sec = time.time() - start_time_sec

321
322
323
    with tf.io.gfile.GFile(training_summary_path, 'rb') as reader:
      summary = json.loads(reader.read().decode('utf-8'))

324
325
326
327
328
    super(BertClassifyAccuracy, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
        min_accuracy=min_accuracy,
        max_accuracy=max_accuracy)
329

330
331
332
333
334
335
336
337
  def _setup(self):
    super(BertClassifyAccuracy, self)._setup()
    FLAGS.train_data_path = self.train_data_path
    FLAGS.eval_data_path = self.eval_data_path
    FLAGS.input_meta_data_path = self.input_meta_data_path
    FLAGS.bert_config_file = self.bert_config_file
    FLAGS.init_checkpoint = self.pretrained_checkpoint_path

338
339
340
341
342
343
344
  def benchmark_8_gpu_mrpc(self):
    """Run BERT model accuracy test with 8 GPUs.

    Due to comparatively small cardinality of  MRPC dataset, training
    accuracy metric has high variance between trainings. As so, we
    set the wide range of allowed accuracy (84% to 88%).
    """
345
    self._setup()
346
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_mrpc')
347

348
349
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
350
    self._run_and_report_benchmark(summary_path)
351

352
353
354
355
  def benchmark_8_gpu_mrpc_xla(self):
    """Run BERT model accuracy test with 8 GPUs with XLA."""
    self._setup()
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_mrpc_xla')
356
    FLAGS.enable_xla = True
357
358
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
359
    self._run_and_report_benchmark(summary_path)
360

361
362
363

if __name__ == '__main__':
  tf.test.main()