base_config.py 4.36 KB
Newer Older
1
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Yeqing Li's avatar
Yeqing Li committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Base config template."""


Pengchong Jin's avatar
Pengchong Jin committed
18
19
20
21
22
23
24
25
26
BACKBONES = [
    'resnet',
]

MULTILEVEL_FEATURES = [
    'fpn',
]

# pylint: disable=line-too-long
Yeqing Li's avatar
Yeqing Li committed
27
28
29
30
31
32
33
34
35
36
37
38
39
# For ResNet, this freezes the variables of the first conv1 and conv2_x
# layers [1], which leads to higher training speed and slightly better testing
# accuracy. The intuition is that the low-level architecture (e.g., ResNet-50)
# is able to capture low-level features such as edges; therefore, it does not
# need to be fine-tuned for the detection task.
# Note that we need to trailing `/` to avoid the incorrect match.
# [1]: https://github.com/facebookresearch/Detectron/blob/master/detectron/core/config.py#L198
RESNET_FROZEN_VAR_PREFIX = r'(resnet\d+)\/(conv2d(|_([1-9]|10))|batch_normalization(|_([1-9]|10)))\/'
REGULARIZATION_VAR_REGEX = r'.*(kernel|weight):0$'

BASE_CFG = {
    'model_dir': '',
    'use_tpu': True,
Yeqing Li's avatar
Yeqing Li committed
40
    'strategy_type': 'tpu',
Yeqing Li's avatar
Yeqing Li committed
41
42
43
    'isolate_session_state': False,
    'train': {
        'iterations_per_loop': 100,
Yeqing Li's avatar
Yeqing Li committed
44
        'batch_size': 64,
Yeqing Li's avatar
Yeqing Li committed
45
46
47
48
49
50
        'total_steps': 22500,
        'num_cores_per_replica': None,
        'input_partition_dims': None,
        'optimizer': {
            'type': 'momentum',
            'momentum': 0.9,
Pengchong Jin's avatar
Pengchong Jin committed
51
            'nesterov': True,  # `False` is better for TPU v3-128.
Yeqing Li's avatar
Yeqing Li committed
52
53
54
55
56
57
58
59
60
61
62
63
64
        },
        'learning_rate': {
            'type': 'step',
            'warmup_learning_rate': 0.0067,
            'warmup_steps': 500,
            'init_learning_rate': 0.08,
            'learning_rate_levels': [0.008, 0.0008],
            'learning_rate_steps': [15000, 20000],
        },
        'checkpoint': {
            'path': '',
            'prefix': '',
        },
Pengchong Jin's avatar
Pengchong Jin committed
65
66
67
        # One can use 'RESNET_FROZEN_VAR_PREFIX' to speed up ResNet training
        # when loading from the checkpoint.
        'frozen_variable_prefix': '',
Yeqing Li's avatar
Yeqing Li committed
68
69
        'train_file_pattern': '',
        'train_dataset_type': 'tfrecord',
Pengchong Jin's avatar
Pengchong Jin committed
70
        # TODO(b/142174042): Support transpose_input option.
Yeqing Li's avatar
Yeqing Li committed
71
        'transpose_input': False,
Yeqing Li's avatar
Yeqing Li committed
72
73
74
        'regularization_variable_regex': REGULARIZATION_VAR_REGEX,
        'l2_weight_decay': 0.0001,
        'gradient_clip_norm': 0.0,
Pengchong Jin's avatar
Pengchong Jin committed
75
        'input_sharding': False,
Yeqing Li's avatar
Yeqing Li committed
76
77
    },
    'eval': {
Pengchong Jin's avatar
Pengchong Jin committed
78
        'input_sharding': True,
Yeqing Li's avatar
Yeqing Li committed
79
        'batch_size': 8,
Yeqing Li's avatar
Yeqing Li committed
80
81
82
83
84
85
86
87
88
        'eval_samples': 5000,
        'min_eval_interval': 180,
        'eval_timeout': None,
        'num_steps_per_eval': 1000,
        'type': 'box',
        'use_json_file': True,
        'val_json_file': '',
        'eval_file_pattern': '',
        'eval_dataset_type': 'tfrecord',
Pengchong Jin's avatar
Pengchong Jin committed
89
90
91
        # When visualizing images, set evaluation batch size to 40 to avoid
        # potential OOM.
        'num_images_to_visualize': 0,
Yeqing Li's avatar
Yeqing Li committed
92
93
    },
    'predict': {
Yeqing Li's avatar
Yeqing Li committed
94
        'batch_size': 8,
Yeqing Li's avatar
Yeqing Li committed
95
    },
Pengchong Jin's avatar
Pengchong Jin committed
96
97
    'architecture': {
        'backbone': 'resnet',
Yeqing Li's avatar
Yeqing Li committed
98
99
        'min_level': 3,
        'max_level': 7,
Pengchong Jin's avatar
Pengchong Jin committed
100
101
102
103
104
105
106
        'multilevel_features': 'fpn',
        'use_bfloat16': True,
        # Note that `num_classes` is the total number of classes including
        # one background classes whose index is 0.
        'num_classes': 91,
    },
    'anchor': {
Yeqing Li's avatar
Yeqing Li committed
107
108
109
110
        'num_scales': 3,
        'aspect_ratios': [1.0, 2.0, 0.5],
        'anchor_size': 4.0,
    },
Pengchong Jin's avatar
Pengchong Jin committed
111
112
113
114
115
116
117
    'norm_activation': {
        'activation': 'relu',
        'batch_norm_momentum': 0.997,
        'batch_norm_epsilon': 1e-4,
        'batch_norm_trainable': True,
        'use_sync_bn': False,
    },
Yeqing Li's avatar
Yeqing Li committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
    'resnet': {
        'resnet_depth': 50,
    },
    'fpn': {
        'fpn_feat_dims': 256,
        'use_separable_conv': False,
        'use_batch_norm': True,
    },
    'postprocess': {
        'use_batched_nms': False,
        'max_total_size': 100,
        'nms_iou_threshold': 0.5,
        'score_threshold': 0.05,
        'pre_nms_num_boxes': 5000,
    },
    'enable_summary': False,
}
# pylint: enable=line-too-long