net_utils.py 8.13 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Commonly used TensorFlow 2 network blocks."""
from typing import Any, Text, Sequence, Union

import tensorflow as tf
19
from official.modeling import tf_utils
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

WEIGHT_INITIALIZER = {
    'Xavier': tf.keras.initializers.GlorotUniform,
    'Gaussian': lambda: tf.keras.initializers.RandomNormal(stddev=0.01),
}

initializers = tf.keras.initializers
regularizers = tf.keras.regularizers


def make_set_from_start_endpoint(start_endpoint: Text,
                                 endpoints: Sequence[Text]):
  """Makes a subset of endpoints from the given starting position."""
  if start_endpoint not in endpoints:
    return set()
  start_index = endpoints.index(start_endpoint)
  return set(endpoints[start_index:])


def apply_depth_multiplier(d: Union[int, Sequence[Any]],
                           depth_multiplier: float):
  """Applies depth_multiplier recursively to ints."""
  if isinstance(d, int):
    return int(d * depth_multiplier)
  else:
    return [apply_depth_multiplier(x, depth_multiplier) for x in d]


class ParameterizedConvLayer(tf.keras.layers.Layer):
  """Convolution layer based on the input conv_type."""

  def __init__(
      self,
      conv_type: Text,
      kernel_size: int,
      filters: int,
      strides: Sequence[int],
      rates: Sequence[int],
      use_sync_bn: bool = False,
      norm_momentum: float = 0.999,
      norm_epsilon: float = 0.001,
      temporal_conv_initializer: Union[
          Text, initializers.Initializer] = 'glorot_uniform',
      kernel_initializer: Union[Text,
                                initializers.Initializer] = 'truncated_normal',
      kernel_regularizer: Union[Text, regularizers.Regularizer] = 'l2',
      **kwargs):
    super(ParameterizedConvLayer, self).__init__(**kwargs)
    self._conv_type = conv_type
    self._kernel_size = kernel_size
    self._filters = filters
    self._strides = strides
    self._rates = rates
    self._use_sync_bn = use_sync_bn
    self._norm_momentum = norm_momentum
    self._norm_epsilon = norm_epsilon
    if use_sync_bn:
      self._norm = tf.keras.layers.experimental.SyncBatchNormalization
    else:
      self._norm = tf.keras.layers.BatchNormalization
    if tf.keras.backend.image_data_format() == 'channels_last':
      self._channel_axis = -1
    else:
      self._channel_axis = 1
    self._temporal_conv_initializer = temporal_conv_initializer
    self._kernel_initializer = kernel_initializer
    self._kernel_regularizer = kernel_regularizer

  def _build_conv_layer_params(self, input_shape):
    """Builds params for conv layers."""
    conv_layer_params = []
    if self._conv_type == '3d':
      conv_layer_params.append(
          dict(
              filters=self._filters,
              kernel_size=[self._kernel_size] * 3,
              strides=self._strides,
              dilation_rate=self._rates,
98
99
              kernel_initializer=tf_utils.clone_initializer(
                  self._kernel_initializer),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
100
101
102
103
104
105
106
107
          ))
    elif self._conv_type == '2d':
      conv_layer_params.append(
          dict(
              filters=self._filters,
              kernel_size=[1, self._kernel_size, self._kernel_size],
              strides=[1, self._strides[1], self._strides[2]],
              dilation_rate=[1, self._rates[1], self._rates[2]],
108
109
              kernel_initializer=tf_utils.clone_initializer(
                  self._kernel_initializer),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
110
111
112
113
114
115
116
117
118
          ))
    elif self._conv_type == '1+2d':
      channels_in = input_shape[self._channel_axis]
      conv_layer_params.append(
          dict(
              filters=channels_in,
              kernel_size=[self._kernel_size, 1, 1],
              strides=[self._strides[0], 1, 1],
              dilation_rate=[self._rates[0], 1, 1],
119
120
              kernel_initializer=tf_utils.clone_initializer(
                  self._temporal_conv_initializer),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
121
122
123
124
125
126
127
          ))
      conv_layer_params.append(
          dict(
              filters=self._filters,
              kernel_size=[1, self._kernel_size, self._kernel_size],
              strides=[1, self._strides[1], self._strides[2]],
              dilation_rate=[1, self._rates[1], self._rates[2]],
128
129
              kernel_initializer=tf_utils.clone_initializer(
                  self._kernel_initializer),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
130
131
132
133
134
135
136
137
          ))
    elif self._conv_type == '2+1d':
      conv_layer_params.append(
          dict(
              filters=self._filters,
              kernel_size=[1, self._kernel_size, self._kernel_size],
              strides=[1, self._strides[1], self._strides[2]],
              dilation_rate=[1, self._rates[1], self._rates[2]],
138
139
              kernel_initializer=tf_utils.clone_initializer(
                  self._kernel_initializer),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
140
141
142
143
144
145
146
          ))
      conv_layer_params.append(
          dict(
              filters=self._filters,
              kernel_size=[self._kernel_size, 1, 1],
              strides=[self._strides[0], 1, 1],
              dilation_rate=[self._rates[0], 1, 1],
147
148
              kernel_initializer=tf_utils.clone_initializer(
                  self._temporal_conv_initializer),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
149
150
151
152
153
154
155
156
          ))
    elif self._conv_type == '1+1+1d':
      conv_layer_params.append(
          dict(
              filters=self._filters,
              kernel_size=[1, 1, self._kernel_size],
              strides=[1, 1, self._strides[2]],
              dilation_rate=[1, 1, self._rates[2]],
157
158
              kernel_initializer=tf_utils.clone_initializer(
                  self._kernel_initializer),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
159
160
161
162
163
164
165
          ))
      conv_layer_params.append(
          dict(
              filters=self._filters,
              kernel_size=[1, self._kernel_size, 1],
              strides=[1, self._strides[1], 1],
              dilation_rate=[1, self._rates[1], 1],
166
167
              kernel_initializer=tf_utils.clone_initializer(
                  self._kernel_initializer),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
168
169
170
171
172
173
174
          ))
      conv_layer_params.append(
          dict(
              filters=self._filters,
              kernel_size=[self._kernel_size, 1, 1],
              strides=[self._strides[0], 1, 1],
              dilation_rate=[self._rates[0], 1, 1],
175
176
              kernel_initializer=tf_utils.clone_initializer(
                  self._kernel_initializer),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
          ))
    else:
      raise ValueError('Unsupported conv_type: {}'.format(self._conv_type))
    return conv_layer_params

  def _build_norm_layer_params(self, conv_param):
    """Builds params for the norm layer after one conv layer."""
    return dict(
        axis=self._channel_axis,
        momentum=self._norm_momentum,
        epsilon=self._norm_epsilon,
        scale=False,
        gamma_initializer='ones')

  def _build_activation_layer_params(self, conv_param):
    """Builds params for the activation layer after one conv layer."""
    return {}

  def _append_conv_layer(self, param):
    """Appends conv, normalization and activation layers."""
    self._parameterized_conv_layers.append(
        tf.keras.layers.Conv3D(
            padding='same',
            use_bias=False,
            kernel_regularizer=self._kernel_regularizer,
            **param,
        ))
    norm_layer_params = self._build_norm_layer_params(param)
    self._parameterized_conv_layers.append(self._norm(**norm_layer_params))

    relu_layer_params = self._build_activation_layer_params(param)
    self._parameterized_conv_layers.append(
        tf.keras.layers.Activation('relu', **relu_layer_params))

  def build(self, input_shape):
    self._parameterized_conv_layers = []
    for conv_layer_param in self._build_conv_layer_params(input_shape):
      self._append_conv_layer(conv_layer_param)
    super(ParameterizedConvLayer, self).build(input_shape)

  def call(self, inputs):
    x = inputs
    for layer in self._parameterized_conv_layers:
      x = layer(x)
    return x