exporter_test.py 18.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Tests for object_detection.export_inference_graph."""
import os
import numpy as np
19
import six
20
21
22
23
24
25
import tensorflow as tf
from object_detection import exporter
from object_detection.builders import model_builder
from object_detection.core import model
from object_detection.protos import pipeline_pb2

26
27
28
29
30
if six.PY2:
  import mock  # pylint: disable=g-import-not-at-top
else:
  from unittest import mock  # pylint: disable=g-import-not-at-top

31
32
33

class FakeModel(model.DetectionModel):

34
35
36
  def __init__(self, add_detection_masks=False):
    self._add_detection_masks = add_detection_masks

37
  def preprocess(self, inputs):
38
    return tf.identity(inputs)
39
40

  def predict(self, preprocessed_inputs):
41
    return {'image': tf.layers.conv2d(preprocessed_inputs, 3, 1)}
42
43
44

  def postprocess(self, prediction_dict):
    with tf.control_dependencies(prediction_dict.values()):
45
      postprocessed_tensors = {
46
47
48
49
50
51
          'detection_boxes': tf.constant([[0.0, 0.0, 0.5, 0.5],
                                          [0.5, 0.5, 0.8, 0.8]], tf.float32),
          'detection_scores': tf.constant([[0.7, 0.6]], tf.float32),
          'detection_classes': tf.constant([[0, 1]], tf.float32),
          'num_detections': tf.constant([2], tf.float32)
      }
52
53
54
55
      if self._add_detection_masks:
        postprocessed_tensors['detection_masks'] = tf.constant(
            np.arange(32).reshape([2, 4, 4]), tf.float32)
    return postprocessed_tensors
56
57
58
59
60
61
62
63
64
65
66
67
68
69

  def restore_fn(self, checkpoint_path, from_detection_checkpoint):
    pass

  def loss(self, prediction_dict):
    pass


class ExportInferenceGraphTest(tf.test.TestCase):

  def _save_checkpoint_from_mock_model(self, checkpoint_path,
                                       use_moving_averages):
    g = tf.Graph()
    with g.as_default():
70
71
72
73
74
      mock_model = FakeModel()
      preprocessed_inputs = mock_model.preprocess(
          tf.ones([1, 3, 4, 3], tf.float32))
      predictions = mock_model.predict(preprocessed_inputs)
      mock_model.postprocess(predictions)
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
      if use_moving_averages:
        tf.train.ExponentialMovingAverage(0.0).apply()
      saver = tf.train.Saver()
      init = tf.global_variables_initializer()
      with self.test_session() as sess:
        sess.run(init)
        saver.save(sess, checkpoint_path)

  def _load_inference_graph(self, inference_graph_path):
    od_graph = tf.Graph()
    with od_graph.as_default():
      od_graph_def = tf.GraphDef()
      with tf.gfile.GFile(inference_graph_path) as fid:
        serialized_graph = fid.read()
        od_graph_def.ParseFromString(serialized_graph)
        tf.import_graph_def(od_graph_def, name='')
    return od_graph

  def _create_tf_example(self, image_array):
    with self.test_session():
      encoded_image = tf.image.encode_jpeg(tf.constant(image_array)).eval()
    def _bytes_feature(value):
      return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
    example = tf.train.Example(features=tf.train.Features(feature={
        'image/encoded': _bytes_feature(encoded_image),
        'image/format': _bytes_feature('jpg'),
        'image/source_id': _bytes_feature('image_id')
    })).SerializeToString()
    return example

  def test_export_graph_with_image_tensor_input(self):
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
108
      mock_builder.return_value = FakeModel()
109
110
111
112
113
114
115
116
117
118
119
120
121
122
      inference_graph_path = os.path.join(self.get_temp_dir(),
                                          'exported_graph.pbtxt')

      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      exporter.export_inference_graph(
          input_type='image_tensor',
          pipeline_config=pipeline_config,
          checkpoint_path=None,
          inference_graph_path=inference_graph_path)

  def test_export_graph_with_tf_example_input(self):
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
123
      mock_builder.return_value = FakeModel()
124
125
126
127
128
129
130
131
132
133
      inference_graph_path = os.path.join(self.get_temp_dir(),
                                          'exported_graph.pbtxt')
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      exporter.export_inference_graph(
          input_type='tf_example',
          pipeline_config=pipeline_config,
          checkpoint_path=None,
          inference_graph_path=inference_graph_path)

134
135
136
137
138
139
140
141
142
143
144
145
146
147
  def test_export_graph_with_encoded_image_string_input(self):
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
      mock_builder.return_value = FakeModel()
      inference_graph_path = os.path.join(self.get_temp_dir(),
                                          'exported_graph.pbtxt')
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      exporter.export_inference_graph(
          input_type='encoded_image_string_tensor',
          pipeline_config=pipeline_config,
          checkpoint_path=None,
          inference_graph_path=inference_graph_path)

148
149
150
151
152
153
154
155
  def test_export_frozen_graph(self):
    checkpoint_path = os.path.join(self.get_temp_dir(), 'model-ckpt')
    self._save_checkpoint_from_mock_model(checkpoint_path,
                                          use_moving_averages=False)
    inference_graph_path = os.path.join(self.get_temp_dir(),
                                        'exported_graph.pb')
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
156
      mock_builder.return_value = FakeModel()
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      exporter.export_inference_graph(
          input_type='image_tensor',
          pipeline_config=pipeline_config,
          checkpoint_path=checkpoint_path,
          inference_graph_path=inference_graph_path)

  def test_export_frozen_graph_with_moving_averages(self):
    checkpoint_path = os.path.join(self.get_temp_dir(), 'model-ckpt')
    self._save_checkpoint_from_mock_model(checkpoint_path,
                                          use_moving_averages=True)
    inference_graph_path = os.path.join(self.get_temp_dir(),
                                        'exported_graph.pb')
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
173
      mock_builder.return_value = FakeModel()
174
175
176
177
178
179
180
181
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = True
      exporter.export_inference_graph(
          input_type='image_tensor',
          pipeline_config=pipeline_config,
          checkpoint_path=checkpoint_path,
          inference_graph_path=inference_graph_path)

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
  def test_export_model_with_all_output_nodes(self):
    checkpoint_path = os.path.join(self.get_temp_dir(), 'model-ckpt')
    self._save_checkpoint_from_mock_model(checkpoint_path,
                                          use_moving_averages=False)
    inference_graph_path = os.path.join(self.get_temp_dir(),
                                        'exported_graph.pb')
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
      mock_builder.return_value = FakeModel(add_detection_masks=True)
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      exporter.export_inference_graph(
          input_type='image_tensor',
          pipeline_config=pipeline_config,
          checkpoint_path=checkpoint_path,
          inference_graph_path=inference_graph_path)
    inference_graph = self._load_inference_graph(inference_graph_path)
    with self.test_session(graph=inference_graph):
      inference_graph.get_tensor_by_name('image_tensor:0')
      inference_graph.get_tensor_by_name('detection_boxes:0')
      inference_graph.get_tensor_by_name('detection_scores:0')
      inference_graph.get_tensor_by_name('detection_classes:0')
      inference_graph.get_tensor_by_name('detection_masks:0')
      inference_graph.get_tensor_by_name('num_detections:0')

  def test_export_model_with_detection_only_nodes(self):
    checkpoint_path = os.path.join(self.get_temp_dir(), 'model-ckpt')
    self._save_checkpoint_from_mock_model(checkpoint_path,
                                          use_moving_averages=False)
    inference_graph_path = os.path.join(self.get_temp_dir(),
                                        'exported_graph.pb')
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
      mock_builder.return_value = FakeModel(add_detection_masks=False)
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      exporter.export_inference_graph(
          input_type='image_tensor',
          pipeline_config=pipeline_config,
          checkpoint_path=checkpoint_path,
          inference_graph_path=inference_graph_path)
    inference_graph = self._load_inference_graph(inference_graph_path)
    with self.test_session(graph=inference_graph):
      inference_graph.get_tensor_by_name('image_tensor:0')
      inference_graph.get_tensor_by_name('detection_boxes:0')
      inference_graph.get_tensor_by_name('detection_scores:0')
      inference_graph.get_tensor_by_name('detection_classes:0')
      inference_graph.get_tensor_by_name('num_detections:0')
      with self.assertRaises(KeyError):
        inference_graph.get_tensor_by_name('detection_masks:0')

231
232
233
234
235
236
237
238
  def test_export_and_run_inference_with_image_tensor(self):
    checkpoint_path = os.path.join(self.get_temp_dir(), 'model-ckpt')
    self._save_checkpoint_from_mock_model(checkpoint_path,
                                          use_moving_averages=False)
    inference_graph_path = os.path.join(self.get_temp_dir(),
                                        'exported_graph.pb')
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
239
      mock_builder.return_value = FakeModel(add_detection_masks=True)
240
241
242
243
244
245
246
247
248
249
250
251
252
253
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      exporter.export_inference_graph(
          input_type='image_tensor',
          pipeline_config=pipeline_config,
          checkpoint_path=checkpoint_path,
          inference_graph_path=inference_graph_path)

    inference_graph = self._load_inference_graph(inference_graph_path)
    with self.test_session(graph=inference_graph) as sess:
      image_tensor = inference_graph.get_tensor_by_name('image_tensor:0')
      boxes = inference_graph.get_tensor_by_name('detection_boxes:0')
      scores = inference_graph.get_tensor_by_name('detection_scores:0')
      classes = inference_graph.get_tensor_by_name('detection_classes:0')
254
      masks = inference_graph.get_tensor_by_name('detection_masks:0')
255
      num_detections = inference_graph.get_tensor_by_name('num_detections:0')
256
257
      (boxes, scores, classes, masks, num_detections) = sess.run(
          [boxes, scores, classes, masks, num_detections],
258
259
260
261
262
          feed_dict={image_tensor: np.ones((1, 4, 4, 3)).astype(np.uint8)})
      self.assertAllClose(boxes, [[0.0, 0.0, 0.5, 0.5],
                                  [0.5, 0.5, 0.8, 0.8]])
      self.assertAllClose(scores, [[0.7, 0.6]])
      self.assertAllClose(classes, [[1, 2]])
263
      self.assertAllClose(masks, np.arange(32).reshape([2, 4, 4]))
264
265
      self.assertAllClose(num_detections, [2])

266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
  def _create_encoded_image_string(self, image_array_np, encoding_format):
    od_graph = tf.Graph()
    with od_graph.as_default():
      if encoding_format == 'jpg':
        encoded_string = tf.image.encode_jpeg(image_array_np)
      elif encoding_format == 'png':
        encoded_string = tf.image.encode_png(image_array_np)
      else:
        raise ValueError('Supports only the following formats: `jpg`, `png`')
    with self.test_session(graph=od_graph):
      return encoded_string.eval()

  def test_export_and_run_inference_with_encoded_image_string_tensor(self):
    checkpoint_path = os.path.join(self.get_temp_dir(), 'model-ckpt')
    self._save_checkpoint_from_mock_model(checkpoint_path,
                                          use_moving_averages=False)
    inference_graph_path = os.path.join(self.get_temp_dir(),
                                        'exported_graph.pb')
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
      mock_builder.return_value = FakeModel(add_detection_masks=True)
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      exporter.export_inference_graph(
          input_type='encoded_image_string_tensor',
          pipeline_config=pipeline_config,
          checkpoint_path=checkpoint_path,
          inference_graph_path=inference_graph_path)

    inference_graph = self._load_inference_graph(inference_graph_path)
    jpg_image_str = self._create_encoded_image_string(
        np.ones((4, 4, 3)).astype(np.uint8), 'jpg')
    png_image_str = self._create_encoded_image_string(
        np.ones((4, 4, 3)).astype(np.uint8), 'png')
    with self.test_session(graph=inference_graph) as sess:
      image_str_tensor = inference_graph.get_tensor_by_name(
          'encoded_image_string_tensor:0')
      boxes = inference_graph.get_tensor_by_name('detection_boxes:0')
      scores = inference_graph.get_tensor_by_name('detection_scores:0')
      classes = inference_graph.get_tensor_by_name('detection_classes:0')
      masks = inference_graph.get_tensor_by_name('detection_masks:0')
      num_detections = inference_graph.get_tensor_by_name('num_detections:0')
      for image_str in [jpg_image_str, png_image_str]:
        (boxes_np, scores_np, classes_np, masks_np,
         num_detections_np) = sess.run(
             [boxes, scores, classes, masks, num_detections],
             feed_dict={image_str_tensor: image_str})
        self.assertAllClose(boxes_np, [[0.0, 0.0, 0.5, 0.5],
                                       [0.5, 0.5, 0.8, 0.8]])
        self.assertAllClose(scores_np, [[0.7, 0.6]])
        self.assertAllClose(classes_np, [[1, 2]])
        self.assertAllClose(masks_np, np.arange(32).reshape([2, 4, 4]))
        self.assertAllClose(num_detections_np, [2])

320
321
322
323
324
325
326
327
  def test_export_and_run_inference_with_tf_example(self):
    checkpoint_path = os.path.join(self.get_temp_dir(), 'model-ckpt')
    self._save_checkpoint_from_mock_model(checkpoint_path,
                                          use_moving_averages=False)
    inference_graph_path = os.path.join(self.get_temp_dir(),
                                        'exported_graph.pb')
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
328
      mock_builder.return_value = FakeModel(add_detection_masks=True)
329
330
331
332
333
334
335
336
337
338
339
340
341
342
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      exporter.export_inference_graph(
          input_type='tf_example',
          pipeline_config=pipeline_config,
          checkpoint_path=checkpoint_path,
          inference_graph_path=inference_graph_path)

    inference_graph = self._load_inference_graph(inference_graph_path)
    with self.test_session(graph=inference_graph) as sess:
      tf_example = inference_graph.get_tensor_by_name('tf_example:0')
      boxes = inference_graph.get_tensor_by_name('detection_boxes:0')
      scores = inference_graph.get_tensor_by_name('detection_scores:0')
      classes = inference_graph.get_tensor_by_name('detection_classes:0')
343
      masks = inference_graph.get_tensor_by_name('detection_masks:0')
344
      num_detections = inference_graph.get_tensor_by_name('num_detections:0')
345
346
      (boxes, scores, classes, masks, num_detections) = sess.run(
          [boxes, scores, classes, masks, num_detections],
347
348
349
350
351
352
          feed_dict={tf_example: self._create_tf_example(
              np.ones((4, 4, 3)).astype(np.uint8))})
      self.assertAllClose(boxes, [[0.0, 0.0, 0.5, 0.5],
                                  [0.5, 0.5, 0.8, 0.8]])
      self.assertAllClose(scores, [[0.7, 0.6]])
      self.assertAllClose(classes, [[1, 2]])
353
      self.assertAllClose(masks, np.arange(32).reshape([2, 4, 4]))
354
355
      self.assertAllClose(num_detections, [2])

356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
  def test_export_saved_model_and_run_inference(self):
    checkpoint_path = os.path.join(self.get_temp_dir(), 'model-ckpt')
    self._save_checkpoint_from_mock_model(checkpoint_path,
                                          use_moving_averages=False)
    inference_graph_path = os.path.join(self.get_temp_dir(),
                                        'saved_model')

    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
      mock_builder.return_value = FakeModel(add_detection_masks=True)
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      exporter.export_inference_graph(
          input_type='tf_example',
          pipeline_config=pipeline_config,
          checkpoint_path=checkpoint_path,
          inference_graph_path=inference_graph_path,
          export_as_saved_model=True)

    with tf.Graph().as_default() as od_graph:
      with self.test_session(graph=od_graph) as sess:
        tf.saved_model.loader.load(
            sess, [tf.saved_model.tag_constants.SERVING], inference_graph_path)
        tf_example = od_graph.get_tensor_by_name('import/tf_example:0')
        boxes = od_graph.get_tensor_by_name('import/detection_boxes:0')
        scores = od_graph.get_tensor_by_name('import/detection_scores:0')
        classes = od_graph.get_tensor_by_name('import/detection_classes:0')
        masks = od_graph.get_tensor_by_name('import/detection_masks:0')
        num_detections = od_graph.get_tensor_by_name('import/num_detections:0')
        (boxes, scores, classes, masks, num_detections) = sess.run(
            [boxes, scores, classes, masks, num_detections],
            feed_dict={tf_example: self._create_tf_example(
                np.ones((4, 4, 3)).astype(np.uint8))})
        self.assertAllClose(boxes, [[0.0, 0.0, 0.5, 0.5],
                                    [0.5, 0.5, 0.8, 0.8]])
        self.assertAllClose(scores, [[0.7, 0.6]])
        self.assertAllClose(classes, [[1, 2]])
        self.assertAllClose(masks, np.arange(32).reshape([2, 4, 4]))
        self.assertAllClose(num_detections, [2])
395
396
397

if __name__ == '__main__':
  tf.test.main()