train.py 7.22 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Script to train the Attention OCR model.

A simple usage example:
python train.py
"""
import collections
import logging
import tensorflow as tf
from tensorflow.contrib import slim
from tensorflow import app
26
from tensorflow.compat.v1 import flags
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
from tensorflow.contrib.tfprof import model_analyzer

import data_provider
import common_flags

FLAGS = flags.FLAGS
common_flags.define()

# yapf: disable
flags.DEFINE_integer('task', 0,
                     'The Task ID. This value is used when training with '
                     'multiple workers to identify each worker.')

flags.DEFINE_integer('ps_tasks', 0,
                     'The number of parameter servers. If the value is 0, then'
                     ' the parameters are handled locally by the worker.')

flags.DEFINE_integer('save_summaries_secs', 60,
                     'The frequency with which summaries are saved, in '
                     'seconds.')

flags.DEFINE_integer('save_interval_secs', 600,
                     'Frequency in seconds of saving the model.')

flags.DEFINE_integer('max_number_of_steps', int(1e10),
                     'The maximum number of gradient steps.')

flags.DEFINE_string('checkpoint_inception', '',
                    'Checkpoint to recover inception weights from.')

flags.DEFINE_float('clip_gradient_norm', 2.0,
                   'If greater than 0 then the gradients would be clipped by '
                   'it.')

flags.DEFINE_bool('sync_replicas', False,
                  'If True will synchronize replicas during training.')

flags.DEFINE_integer('replicas_to_aggregate', 1,
                     'The number of gradients updates before updating params.')

flags.DEFINE_integer('total_num_replicas', 1,
                     'Total number of worker replicas.')

flags.DEFINE_integer('startup_delay_steps', 15,
                     'Number of training steps between replicas startup.')

flags.DEFINE_boolean('reset_train_dir', False,
                     'If true will delete all files in the train_log_dir')

flags.DEFINE_boolean('show_graph_stats', False,
                     'Output model size stats to stderr.')
# yapf: enable

TrainingHParams = collections.namedtuple('TrainingHParams', [
    'learning_rate',
    'optimizer',
    'momentum',
    'use_augment_input',
])


def get_training_hparams():
  return TrainingHParams(
      learning_rate=FLAGS.learning_rate,
      optimizer=FLAGS.optimizer,
      momentum=FLAGS.momentum,
      use_augment_input=FLAGS.use_augment_input)


def create_optimizer(hparams):
  """Creates optimized based on the specified flags."""
  if hparams.optimizer == 'momentum':
99
    optimizer = tf.compat.v1.train.MomentumOptimizer(
100
101
        hparams.learning_rate, momentum=hparams.momentum)
  elif hparams.optimizer == 'adam':
102
    optimizer = tf.compat.v1.train.AdamOptimizer(hparams.learning_rate)
103
  elif hparams.optimizer == 'adadelta':
104
    optimizer = tf.compat.v1.train.AdadeltaOptimizer(hparams.learning_rate)
105
  elif hparams.optimizer == 'adagrad':
106
    optimizer = tf.compat.v1.train.AdagradOptimizer(hparams.learning_rate)
107
  elif hparams.optimizer == 'rmsprop':
108
    optimizer = tf.compat.v1.train.RMSPropOptimizer(
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
        hparams.learning_rate, momentum=hparams.momentum)
  return optimizer


def train(loss, init_fn, hparams):
  """Wraps slim.learning.train to run a training loop.

  Args:
    loss: a loss tensor
    init_fn: A callable to be executed after all other initialization is done.
    hparams: a model hyper parameters
  """
  optimizer = create_optimizer(hparams)

  if FLAGS.sync_replicas:
    replica_id = tf.constant(FLAGS.task, tf.int32, shape=())
    optimizer = tf.LegacySyncReplicasOptimizer(
        opt=optimizer,
        replicas_to_aggregate=FLAGS.replicas_to_aggregate,
        replica_id=replica_id,
        total_num_replicas=FLAGS.total_num_replicas)
    sync_optimizer = optimizer
    startup_delay_steps = 0
  else:
    startup_delay_steps = 0
    sync_optimizer = None

  train_op = slim.learning.create_train_op(
      loss,
      optimizer,
      summarize_gradients=True,
      clip_gradient_norm=FLAGS.clip_gradient_norm)

  slim.learning.train(
      train_op=train_op,
      logdir=FLAGS.train_log_dir,
      graph=loss.graph,
      master=FLAGS.master,
      is_chief=(FLAGS.task == 0),
      number_of_steps=FLAGS.max_number_of_steps,
      save_summaries_secs=FLAGS.save_summaries_secs,
      save_interval_secs=FLAGS.save_interval_secs,
      startup_delay_steps=startup_delay_steps,
      sync_optimizer=sync_optimizer,
      init_fn=init_fn)


def prepare_training_dir():
157
  if not tf.io.gfile.exists(FLAGS.train_log_dir):
158
    logging.info('Create a new training directory %s', FLAGS.train_log_dir)
159
    tf.io.gfile.makedirs(FLAGS.train_log_dir)
160
161
162
  else:
    if FLAGS.reset_train_dir:
      logging.info('Reset the training directory %s', FLAGS.train_log_dir)
163
164
      tf.io.gfile.rmtree(FLAGS.train_log_dir)
      tf.io.gfile.makedirs(FLAGS.train_log_dir)
165
166
167
168
169
170
171
    else:
      logging.info('Use already existing training directory %s',
                   FLAGS.train_log_dir)


def calculate_graph_metrics():
  param_stats = model_analyzer.print_model_analysis(
172
      tf.compat.v1.get_default_graph(),
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
      tfprof_options=model_analyzer.TRAINABLE_VARS_PARAMS_STAT_OPTIONS)
  return param_stats.total_parameters


def main(_):
  prepare_training_dir()

  dataset = common_flags.create_dataset(split_name=FLAGS.split_name)
  model = common_flags.create_model(dataset.num_char_classes,
                                    dataset.max_sequence_length,
                                    dataset.num_of_views, dataset.null_code)
  hparams = get_training_hparams()

  # If ps_tasks is zero, the local device is used. When using multiple
  # (non-local) replicas, the ReplicaDeviceSetter distributes the variables
  # across the different devices.
189
  device_setter = tf.compat.v1.train.replica_device_setter(
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
      FLAGS.ps_tasks, merge_devices=True)
  with tf.device(device_setter):
    data = data_provider.get_data(
        dataset,
        FLAGS.batch_size,
        augment=hparams.use_augment_input,
        central_crop_size=common_flags.get_crop_size())
    endpoints = model.create_base(data.images, data.labels_one_hot)
    total_loss = model.create_loss(data, endpoints)
    model.create_summaries(data, endpoints, dataset.charset, is_training=True)
    init_fn = model.create_init_fn_to_restore(FLAGS.checkpoint,
                                              FLAGS.checkpoint_inception)
    if FLAGS.show_graph_stats:
      logging.info('Total number of weights in the graph: %s',
                   calculate_graph_metrics())
    train(total_loss, init_fn, hparams)


if __name__ == '__main__':
  app.run()