distributed_executor.py 29.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Custom training loop for running TensorFlow 2.0 models."""

from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function

import os

from absl import flags
from absl import logging
Allen Wang's avatar
Allen Wang committed
26
27

import numpy as np
28
29
30
import tensorflow as tf

# pylint: disable=unused-import,g-import-not-at-top,redefined-outer-name,reimported
Yeqing Li's avatar
Yeqing Li committed
31
from typing import Optional, Dict, List, Text, Callable, Union, Iterator, Any
32
from official.modeling.hyperparams import params_dict
Yeqing Li's avatar
Yeqing Li committed
33
from official.utils import hyperparams_flags
Yeqing Li's avatar
Yeqing Li committed
34
from official.utils.misc import distribution_utils
Will Cromar's avatar
Will Cromar committed
35
from official.utils.misc import keras_utils
36
37
38

FLAGS = flags.FLAGS

Yeqing Li's avatar
Yeqing Li committed
39
40
strategy_flags_dict = hyperparams_flags.strategy_flags_dict
hparam_flags_dict = hyperparams_flags.hparam_flags_dict
41
42
43
44
45
46
47
48
49
50


def _save_checkpoint(checkpoint, model_dir, checkpoint_prefix):
  """Saves model to model_dir with provided checkpoint prefix."""

  checkpoint_path = os.path.join(model_dir, checkpoint_prefix)
  saved_path = checkpoint.save(checkpoint_path)
  logging.info('Saving model as TF checkpoint: %s', saved_path)


Yeqing Li's avatar
Yeqing Li committed
51
52
53
54
55
56
57
def _steps_to_run(current_step, total_steps, steps_per_loop):
  """Calculates steps to run on device."""
  if steps_per_loop <= 0:
    raise ValueError('steps_per_loop should be positive integer.')
  return min(total_steps - current_step, steps_per_loop)


58
59
60
61
def _no_metric():
  return None


Yeqing Li's avatar
Yeqing Li committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
def metrics_as_dict(metric):
  """Puts input metric(s) into a list.

  Args:
    metric: metric(s) to be put into the list. `metric` could be a object, a
      list or a dict of tf.keras.metrics.Metric or has the `required_method`.

  Returns:
    A dictionary of valid metrics.
  """
  if isinstance(metric, tf.keras.metrics.Metric):
    metrics = {metric.name: metric}
  elif isinstance(metric, list):
    metrics = {m.name: m for m in metric}
  elif isinstance(metric, dict):
    metrics = metric
  elif not metric:
    return {}
  else:
    metrics = {'metric': metric}
  return metrics


def metric_results(metric):
  """Collects results from the given metric(s)."""
  metrics = metrics_as_dict(metric)
  metric_result = {
      name: m.result().numpy().astype(float) for name, m in metrics.items()
  }
  return metric_result


def reset_states(metric):
  """Resets states of the given metric(s)."""
  metrics = metrics_as_dict(metric)
  for m in metrics.values():
    m.reset_states()


101
102
103
104
class SummaryWriter(object):
  """Simple SummaryWriter for writing dictionary of metrics.

  Attributes:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
105
    writer: The tf.SummaryWriter.
106
107
108
109
110
111
112
113
114
  """

  def __init__(self, model_dir: Text, name: Text):
    """Inits SummaryWriter with paths.

    Arguments:
      model_dir: the model folder path.
      name: the summary subfolder name.
    """
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
115
    self.writer = tf.summary.create_file_writer(os.path.join(model_dir, name))
116
117
118
119
120
121
122
123
124
125
126
127
128

  def __call__(self, metrics: Union[Dict[Text, float], float], step: int):
    """Write metrics to summary with the given writer.

    Args:
      metrics: a dictionary of metrics values. Prefer dictionary.
      step: integer. The training step.
    """
    if not isinstance(metrics, dict):
      # Support scalar metric without name.
      logging.warning('Warning: summary writer prefer metrics as dictionary.')
      metrics = {'metric': metrics}

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
129
    with self.writer.as_default():
130
131
      for k, v in metrics.items():
        tf.summary.scalar(k, v, step=step)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
132
      self.writer.flush()
133
134
135
136
137
138
139
140
141
142
143


class DistributedExecutor(object):
  """Interface to train and eval models with tf.distribute.Strategy.
  """

  def __init__(self,
               strategy,
               params,
               model_fn,
               loss_fn,
144
               is_multi_host=False):
Yeqing Li's avatar
Yeqing Li committed
145
146
147
148
149
150
151
152
153
154
155
156
    """Constructor.

    Args:
      strategy: an instance of tf.distribute.Strategy.
      params: Model configuration needed to run distribution strategy.
      model_fn: Keras model function. Signature:
        (params: ParamsDict) -> tf.keras.models.Model.
      loss_fn: loss function. Signature:
        (y_true: Tensor, y_pred: Tensor) -> Tensor
      is_multi_host: Set to True when using multi hosts for training, like multi
        worker GPU or TPU pod (slice). Otherwise, False.
    """
157
158
159
160
161
162
163

    self._params = params
    self._model_fn = model_fn
    self._loss_fn = loss_fn
    self._strategy = strategy
    self._checkpoint_name = 'ctl_step_{step}.ckpt'
    self._is_multi_host = is_multi_host
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
164
165
166
    self.train_summary_writer = None
    self.eval_summary_writer = None
    self.global_train_step = None
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

  @property
  def checkpoint_name(self):
    """Returns default checkpoint name."""
    return self._checkpoint_name

  @checkpoint_name.setter
  def checkpoint_name(self, name):
    """Sets default summary writer for the current thread."""
    self._checkpoint_name = name

  def loss_fn(self):
    return self._loss_fn()

  def model_fn(self, params):
    return self._model_fn(params)

  def _save_config(self, model_dir):
    """Save parameters to config files if model_dir is defined."""

    logging.info('Save config to model_dir %s.', model_dir)
    if model_dir:
      if not tf.io.gfile.exists(model_dir):
        tf.io.gfile.makedirs(model_dir)
      self._params.lock()
      params_dict.save_params_dict_to_yaml(self._params,
                                           model_dir + '/params.yaml')
    else:
      logging.warning('model_dir is empty, so skip the save config.')

  def _get_input_iterator(
Yeqing Li's avatar
Yeqing Li committed
198
      self, input_fn: Callable[..., tf.data.Dataset],
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
      strategy: tf.distribute.Strategy) -> Optional[Iterator[Any]]:
    """Returns distributed dataset iterator.

    Args:
      input_fn: (params: dict) -> tf.data.Dataset.
      strategy: an instance of tf.distribute.Strategy.

    Returns:
      An iterator that yields input tensors.
    """

    if input_fn is None:
      return None
    # When training with multiple TPU workers, datasets needs to be cloned
    # across workers. Since Dataset instance cannot be cloned in eager mode,
    # we instead pass callable that returns a dataset.
    if self._is_multi_host:
      return iter(
          strategy.experimental_distribute_datasets_from_function(input_fn))
    else:
Yeqing Li's avatar
Yeqing Li committed
219
      input_data = input_fn()
220
221
      return iter(strategy.experimental_distribute_dataset(input_data))

Yeqing Li's avatar
Yeqing Li committed
222
223
224
225
226
227
  def _create_replicated_step(self,
                              strategy,
                              model,
                              loss_fn,
                              optimizer,
                              metric=None):
Yeqing Li's avatar
Yeqing Li committed
228
229
230
231
232
233
234
235
236
237
238
239
    """Creates a single training step.

    Args:
      strategy: an instance of tf.distribute.Strategy.
      model: (Tensor, bool) -> Tensor. model function.
      loss_fn: (y_true: Tensor, y_pred: Tensor) -> Tensor.
      optimizer: tf.keras.optimizers.Optimizer.
      metric: tf.keras.metrics.Metric subclass.

    Returns:
      The training step callable.
    """
Yeqing Li's avatar
Yeqing Li committed
240
    metrics = metrics_as_dict(metric)
Yeqing Li's avatar
Yeqing Li committed
241
242
243
244
245
246
247
248
249
250

    def _replicated_step(inputs):
      """Replicated training step."""
      inputs, labels = inputs

      with tf.GradientTape() as tape:
        outputs = model(inputs, training=True)
        prediction_loss = loss_fn(labels, outputs)
        loss = tf.reduce_mean(prediction_loss)
        loss = loss / strategy.num_replicas_in_sync
Yeqing Li's avatar
Yeqing Li committed
251
252
        for m in metrics.values():
          m.update_state(labels, outputs)
Yeqing Li's avatar
Yeqing Li committed
253
254
255
256
257
258
259

      grads = tape.gradient(loss, model.trainable_variables)
      optimizer.apply_gradients(zip(grads, model.trainable_variables))
      return loss

    return _replicated_step

260
261
262
263
264
265
266
267
  def _create_train_step(self,
                         strategy,
                         model,
                         loss_fn,
                         optimizer,
                         metric=None):
    """Creates a distributed training step.

Yeqing Li's avatar
Yeqing Li committed
268
269
270
271
272
273
    Args:
      strategy: an instance of tf.distribute.Strategy.
      model: (Tensor, bool) -> Tensor. model function.
      loss_fn: (y_true: Tensor, y_pred: Tensor) -> Tensor.
      optimizer: tf.keras.optimizers.Optimizer.
      metric: tf.keras.metrics.Metric subclass.
274

Yeqing Li's avatar
Yeqing Li committed
275
276
    Returns:
      The training step callable.
277
    """
Yeqing Li's avatar
Yeqing Li committed
278
279
    replicated_step = self._create_replicated_step(strategy, model, loss_fn,
                                                   optimizer, metric)
280
281

    @tf.function
Yeqing Li's avatar
Yeqing Li committed
282
    def train_step(iterator, num_steps):
283
284
285
286
      """Performs a distributed training step.

      Args:
        iterator: an iterator that yields input tensors.
Yeqing Li's avatar
Yeqing Li committed
287
        num_steps: the number of steps in the loop.
288
289
290
291

      Returns:
        The loss tensor.
      """
Yeqing Li's avatar
Yeqing Li committed
292
293
294
      if not isinstance(num_steps, tf.Tensor):
        raise ValueError('steps should be an Tensor. Python object may cause '
                         'retracing.')
295

Ken Franko's avatar
Ken Franko committed
296
      per_replica_losses = strategy.run(
Yeqing Li's avatar
Yeqing Li committed
297
          replicated_step, args=(next(iterator),))
Yeqing Li's avatar
Yeqing Li committed
298
      for _ in tf.range(num_steps - 1):
Ken Franko's avatar
Ken Franko committed
299
        per_replica_losses = strategy.run(
Yeqing Li's avatar
Yeqing Li committed
300
            replicated_step, args=(next(iterator),))
301
302

      # For reporting, we returns the mean of losses.
Yeqing Li's avatar
Yeqing Li committed
303
304
305
306
      losses = tf.nest.map_structure(
          lambda x: strategy.reduce(tf.distribute.ReduceOp.MEAN, x, axis=None),
          per_replica_losses)
      return losses
307
308
309
310
311

    return train_step

  def _create_test_step(self, strategy, model, metric):
    """Creates a distributed test step."""
Yeqing Li's avatar
Yeqing Li committed
312
    metrics = metrics_as_dict(metric)
313
314
315
316
317
318
319
320
321
322
323
324

    @tf.function
    def test_step(iterator):
      """Calculates evaluation metrics on distributed devices."""
      if not metric:
        logging.info('Skip test_step because metric is None (%s)', metric)
        return None, None

      def _test_step_fn(inputs):
        """Replicated accuracy calculation."""
        inputs, labels = inputs
        model_outputs = model(inputs, training=False)
Yeqing Li's avatar
Yeqing Li committed
325
326
        for m in metrics.values():
          m.update_state(labels, model_outputs)
327
328
        return labels, model_outputs

Ken Franko's avatar
Ken Franko committed
329
      return strategy.run(_test_step_fn, args=(next(iterator),))
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

    return test_step

  def train(self,
            train_input_fn: Callable[[params_dict.ParamsDict], tf.data.Dataset],
            eval_input_fn: Callable[[params_dict.ParamsDict],
                                    tf.data.Dataset] = None,
            model_dir: Text = None,
            total_steps: int = 1,
            iterations_per_loop: int = 1,
            train_metric_fn: Callable[[], Any] = None,
            eval_metric_fn: Callable[[], Any] = None,
            summary_writer_fn: Callable[[Text, Text],
                                        SummaryWriter] = SummaryWriter,
            init_checkpoint: Callable[[tf.keras.Model], Any] = None,
Yeqing Li's avatar
Yeqing Li committed
345
            custom_callbacks: List[tf.keras.callbacks.Callback] = None,
346
            continuous_eval: bool = False,
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
            save_config: bool = True):
    """Runs distributed training.

    Args:
      train_input_fn: (params: dict) -> tf.data.Dataset training data input
        function.
      eval_input_fn: (Optional) same type as train_input_fn. If not None, will
        trigger evaluting metric on eval data. If None, will not run eval step.
      model_dir: the folder path for model checkpoints.
      total_steps: total training steps.
      iterations_per_loop: train steps per loop. After each loop, this job will
        update metrics like loss and save checkpoint.
      train_metric_fn: metric_fn for evaluation in train_step.
      eval_metric_fn: metric_fn for evaluation in test_step.
      summary_writer_fn: function to create summary writer.
      init_checkpoint: function to load checkpoint.
Yeqing Li's avatar
Yeqing Li committed
363
364
365
      custom_callbacks: A list of Keras Callbacks objects to run during
        training. More specifically, `on_batch_begin()`, `on_batch_end()`,
        methods are invoked during training.
366
367
368
      continuous_eval: If `True`, will continously run evaluation on every
        available checkpoints. If `False`, will do the evaluation once after the
        final step.
369
370
      save_config: bool. Whether to save params to model_dir.
    Returns:
371
      The training loss and eval metrics.
372
373
374
375
376
377
378
379
380
381
382
    """
    assert train_input_fn is not None
    if train_metric_fn and not callable(train_metric_fn):
      raise ValueError('if `train_metric_fn` is specified, '
                       'train_metric_fn must be a callable.')
    if eval_metric_fn and not callable(eval_metric_fn):
      raise ValueError('if `eval_metric_fn` is specified, '
                       'eval_metric_fn must be a callable.')
    train_metric_fn = train_metric_fn or _no_metric
    eval_metric_fn = eval_metric_fn or _no_metric

Yeqing Li's avatar
Yeqing Li committed
383
    if custom_callbacks and iterations_per_loop != 1:
Will Cromar's avatar
Will Cromar committed
384
      logging.warning(
Yeqing Li's avatar
Yeqing Li committed
385
386
387
          'It is sematically wrong to run callbacks when '
          'iterations_per_loop is not one (%s)', iterations_per_loop)

Will Cromar's avatar
Will Cromar committed
388
389
    custom_callbacks = custom_callbacks or []

Yeqing Li's avatar
Yeqing Li committed
390
391
392
393
394
    def _run_callbacks_on_batch_begin(batch):
      """Runs custom callbacks at the start of every step."""
      if not custom_callbacks:
        return
      for callback in custom_callbacks:
Yeqing Li's avatar
Yeqing Li committed
395
396
        if callback:
          callback.on_batch_begin(batch)
Yeqing Li's avatar
Yeqing Li committed
397
398
399
400
401
402

    def _run_callbacks_on_batch_end(batch):
      """Runs custom callbacks at the end of every step."""
      if not custom_callbacks:
        return
      for callback in custom_callbacks:
Yeqing Li's avatar
Yeqing Li committed
403
404
        if callback:
          callback.on_batch_end(batch)
Yeqing Li's avatar
Yeqing Li committed
405

406
407
408
    if save_config:
      self._save_config(model_dir)

409
410
411
412
413
    if FLAGS.save_checkpoint_freq:
      save_freq = FLAGS.save_checkpoint_freq
    else:
      save_freq = iterations_per_loop

414
415
416
417
418
    params = self._params
    strategy = self._strategy
    # To reduce unnecessary send/receive input pipeline operation, we place
    # input pipeline ops in worker task.
    train_iterator = self._get_input_iterator(train_input_fn, strategy)
419
    train_loss = None
420
    train_metric_result = None
421
    eval_metric_result = None
Yeqing Li's avatar
Yeqing Li committed
422
    tf.keras.backend.set_learning_phase(1)
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
    with strategy.scope():
      # To correctly place the model weights on accelerators,
      # model and optimizer should be created in scope.
      model = self.model_fn(params.as_dict())
      if not hasattr(model, 'optimizer'):
        raise ValueError('User should set optimizer attribute to model '
                         'inside `model_fn`.')
      optimizer = model.optimizer

      # Training loop starts here.
      checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
      latest_checkpoint_file = tf.train.latest_checkpoint(model_dir)
      initial_step = 0
      if latest_checkpoint_file:
        logging.info(
            'Checkpoint file %s found and restoring from '
            'checkpoint', latest_checkpoint_file)
        checkpoint.restore(latest_checkpoint_file)
        initial_step = optimizer.iterations.numpy()
        logging.info('Loading from checkpoint file completed. Init step %d',
                     initial_step)
      elif init_checkpoint:
        logging.info('Restoring from init checkpoint function')
        init_checkpoint(model)
        logging.info('Loading from init checkpoint file completed')

      current_step = optimizer.iterations.numpy()
      checkpoint_name = self.checkpoint_name

      eval_metric = eval_metric_fn()
      train_metric = train_metric_fn()
      train_summary_writer = summary_writer_fn(model_dir, 'eval_train')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
455
456
      self.train_summary_writer = train_summary_writer.writer

457
      test_summary_writer = summary_writer_fn(model_dir, 'eval_test')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
458
      self.eval_summary_writer = test_summary_writer.writer
459

Will Cromar's avatar
Will Cromar committed
460
461
462
463
464
    # Use training summary writer in TimeHistory if it's in use
    for cb in custom_callbacks:
      if isinstance(cb, keras_utils.TimeHistory):
        cb.summary_writer = self.train_summary_writer

465
466
    # Continue training loop.
    train_step = self._create_train_step(
Yeqing Li's avatar
Yeqing Li committed
467
468
469
470
471
        strategy=strategy,
        model=model,
        loss_fn=self.loss_fn(),
        optimizer=optimizer,
        metric=train_metric)
472
473
    test_step = None
    if eval_input_fn and eval_metric:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
474
      self.global_train_step = model.optimizer.iterations
475
476
      test_step = self._create_test_step(strategy, model, metric=eval_metric)

477
    # Step-0 operations
Yeqing Li's avatar
Yeqing Li committed
478
479
480
    if current_step == 0 and not latest_checkpoint_file:
      _save_checkpoint(
          checkpoint, model_dir, checkpoint_name.format(step=current_step))
481
482
483
484
485
486
487
488
    if test_step:
      eval_iterator = self._get_input_iterator(eval_input_fn, strategy)
      eval_metric_result = self._run_evaluation(
          test_step, current_step, eval_metric, eval_iterator)
      logging.info(
          'Step: %s evalation metric = %s.', current_step, eval_metric_result)
      test_summary_writer(
          metrics=eval_metric_result, step=optimizer.iterations)
Yeqing Li's avatar
Yeqing Li committed
489
      reset_states(eval_metric)
490

491
    logging.info('Training started')
492
    last_save_checkpoint_step = current_step
Yeqing Li's avatar
Yeqing Li committed
493
    while current_step < total_steps:
494

Yeqing Li's avatar
Yeqing Li committed
495
496
497
498
499
      num_steps = _steps_to_run(current_step, total_steps, iterations_per_loop)
      _run_callbacks_on_batch_begin(current_step)
      train_loss = train_step(train_iterator,
                              tf.convert_to_tensor(num_steps, dtype=tf.int32))
      current_step += num_steps
500
501
502

      train_loss = tf.nest.map_structure(lambda x: x.numpy().astype(float),
                                         train_loss)
Will Cromar's avatar
Will Cromar committed
503
504

      _run_callbacks_on_batch_end(current_step - 1)
505
506
      if not isinstance(train_loss, dict):
        train_loss = {'total_loss': train_loss}
Yeqing Li's avatar
Yeqing Li committed
507
508
      if np.isnan(train_loss['total_loss']):
        raise ValueError('total loss is NaN.')
509
510

      if train_metric:
Yeqing Li's avatar
Yeqing Li committed
511
        train_metric_result = metric_results(train_metric)
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
        train_metric_result.update(train_loss)
      else:
        train_metric_result = train_loss
      if callable(optimizer.lr):
        train_metric_result.update(
            {'learning_rate': optimizer.lr(current_step).numpy()})
      else:
        train_metric_result.update({'learning_rate': optimizer.lr.numpy()})
      logging.info('Train Step: %d/%d  / loss = %s / training metric = %s',
                   current_step, total_steps, train_loss,
                   train_metric_result)

      train_summary_writer(
          metrics=train_metric_result, step=optimizer.iterations)

Yeqing Li's avatar
Yeqing Li committed
527
528
      # Saves model checkpoints and run validation steps at every
      # iterations_per_loop steps.
529
530
      # To avoid repeated model saving, we do not save after the last
      # step of training.
531
532
      if save_freq > 0 and current_step < total_steps and (
          current_step - last_save_checkpoint_step) >= save_freq:
533
534
        _save_checkpoint(checkpoint, model_dir,
                         checkpoint_name.format(step=current_step))
535
        last_save_checkpoint_step = current_step
536

537
      if continuous_eval and current_step < total_steps and test_step:
538
539
540
541
542
543
544
545
546
547
        eval_iterator = self._get_input_iterator(eval_input_fn, strategy)
        eval_metric_result = self._run_evaluation(test_step, current_step,
                                                  eval_metric, eval_iterator)
        logging.info('Step: %s evalation metric = %s.', current_step,
                     eval_metric_result)
        test_summary_writer(
            metrics=eval_metric_result, step=optimizer.iterations)

      # Re-initialize evaluation metric, except the last step.
      if eval_metric and current_step < total_steps:
Yeqing Li's avatar
Yeqing Li committed
548
        reset_states(eval_metric)
549
      if train_metric and current_step < total_steps:
Yeqing Li's avatar
Yeqing Li committed
550
        reset_states(train_metric)
551
552

    # Reaches the end of training and saves the last checkpoint.
553
554
555
    if last_save_checkpoint_step < total_steps:
      _save_checkpoint(checkpoint, model_dir,
                       checkpoint_name.format(step=current_step))
556
557
558
559
560
561
562
563
564
565

    if test_step:
      logging.info('Running final evaluation after training is complete.')
      eval_iterator = self._get_input_iterator(eval_input_fn, strategy)
      eval_metric_result = self._run_evaluation(test_step, current_step,
                                                eval_metric, eval_iterator)
      logging.info('Final evaluation metric = %s.', eval_metric_result)
      test_summary_writer(
          metrics=eval_metric_result, step=optimizer.iterations)

Will Cromar's avatar
Will Cromar committed
566
567
568
    self.train_summary_writer.close()
    self.eval_summary_writer.close()

569
    return train_metric_result, eval_metric_result
570
571
572
573
574
575
576
577
578
579

  def _run_evaluation(self, test_step, current_training_step, metric,
                      test_iterator):
    """Runs validation steps and aggregate metrics."""
    if not test_iterator or not metric:
      logging.warning(
          'Both test_iterator (%s) and metrics (%s) must not be None.',
          test_iterator, metric)
      return None
    logging.info('Running evaluation after step: %s.', current_training_step)
Yeqing Li's avatar
Yeqing Li committed
580
    eval_step = 0
581
582
    while True:
      try:
Yeqing Li's avatar
Yeqing Li committed
583
584
585
        with tf.experimental.async_scope():
          test_step(test_iterator)
          eval_step += 1
586
      except (StopIteration, tf.errors.OutOfRangeError):
Yeqing Li's avatar
Yeqing Li committed
587
        tf.experimental.async_clear_error()
588
589
        break

Yeqing Li's avatar
Yeqing Li committed
590
    metric_result = metric_results(metric)
Yeqing Li's avatar
Yeqing Li committed
591
592
593
    logging.info('Total eval steps: [%d]', eval_step)
    logging.info('At training step: [%r] Validation metric = %r',
                 current_training_step, metric_result)
594
595
596
597
598
599
600
601
602
603
604
605
606
607
    return metric_result

  def evaluate_from_model_dir(
      self,
      model_dir: Text,
      eval_input_fn: Callable[[params_dict.ParamsDict], tf.data.Dataset],
      eval_metric_fn: Callable[[], Any],
      total_steps: int = -1,
      eval_timeout: int = None,
      min_eval_interval: int = 180,
      summary_writer_fn: Callable[[Text, Text], SummaryWriter] = SummaryWriter):
    """Runs distributed evaluation on model folder.

    Args:
Yeqing Li's avatar
Yeqing Li committed
608
      model_dir: the folder for storing model checkpoints.
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
      eval_input_fn: (Optional) same type as train_input_fn. If not None, will
        trigger evaluting metric on eval data. If None, will not run eval step.
      eval_metric_fn: metric_fn for evaluation in test_step.
      total_steps: total training steps. If the current step reaches the
        total_steps, the evaluation loop will stop.
      eval_timeout: The maximum number of seconds to wait between checkpoints.
        If left as None, then the process will wait indefinitely. Used by
        tf.train.checkpoints_iterator.
      min_eval_interval: The minimum number of seconds between yielding
        checkpoints. Used by tf.train.checkpoints_iterator.
      summary_writer_fn: function to create summary writer.

    Returns:
      Eval metrics dictionary of the last checkpoint.
    """

    if not model_dir:
      raise ValueError('model_dir must be set.')

    def terminate_eval():
      tf.logging.info('Terminating eval after %d seconds of no checkpoints' %
                      eval_timeout)
      return True

    summary_writer = summary_writer_fn(model_dir, 'eval')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
634
    self.eval_summary_writer = summary_writer.writer
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661

    # Read checkpoints from the given model directory
    # until `eval_timeout` seconds elapses.
    for checkpoint_path in tf.train.checkpoints_iterator(
        model_dir,
        min_interval_secs=min_eval_interval,
        timeout=eval_timeout,
        timeout_fn=terminate_eval):
      eval_metric_result, current_step = self.evaluate_checkpoint(
          checkpoint_path=checkpoint_path,
          eval_input_fn=eval_input_fn,
          eval_metric_fn=eval_metric_fn,
          summary_writer=summary_writer)
      if total_steps > 0 and current_step >= total_steps:
        logging.info('Evaluation finished after training step %d', current_step)
        break
    return eval_metric_result

  def evaluate_checkpoint(self,
                          checkpoint_path: Text,
                          eval_input_fn: Callable[[params_dict.ParamsDict],
                                                  tf.data.Dataset],
                          eval_metric_fn: Callable[[], Any],
                          summary_writer: SummaryWriter = None):
    """Runs distributed evaluation on the one checkpoint.

    Args:
Yeqing Li's avatar
Yeqing Li committed
662
      checkpoint_path: the checkpoint to evaluate.
663
664
665
      eval_input_fn: (Optional) same type as train_input_fn. If not None, will
        trigger evaluting metric on eval data. If None, will not run eval step.
      eval_metric_fn: metric_fn for evaluation in test_step.
Yeqing Li's avatar
Yeqing Li committed
666
      summary_writer: function to create summary writer.
667
668
669
670
671
672
673
674

    Returns:
      Eval metrics dictionary of the last checkpoint.
    """
    if not callable(eval_metric_fn):
      raise ValueError('if `eval_metric_fn` is specified, '
                       'eval_metric_fn must be a callable.')

Yeqing Li's avatar
Yeqing Li committed
675
676
    old_phrase = tf.keras.backend.learning_phase()
    tf.keras.backend.set_learning_phase(0)
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
    params = self._params
    strategy = self._strategy
    # To reduce unnecessary send/receive input pipeline operation, we place
    # input pipeline ops in worker task.
    with strategy.scope():

      # To correctly place the model weights on accelerators,
      # model and optimizer should be created in scope.
      model = self.model_fn(params.as_dict())
      checkpoint = tf.train.Checkpoint(model=model)

      eval_metric = eval_metric_fn()
      assert eval_metric, 'eval_metric does not exist'
      test_step = self._create_test_step(strategy, model, metric=eval_metric)

      logging.info('Starting to evaluate.')
      if not checkpoint_path:
        raise ValueError('checkpoint path is empty')
      reader = tf.compat.v1.train.NewCheckpointReader(checkpoint_path)
      current_step = reader.get_tensor(
          'optimizer/iter/.ATTRIBUTES/VARIABLE_VALUE')
      logging.info(
          'Checkpoint file %s found and restoring from '
          'checkpoint', checkpoint_path)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
701
702
      status = checkpoint.restore(checkpoint_path)
      status.expect_partial().assert_existing_objects_matched()
703

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
704
      self.global_train_step = model.optimizer.iterations
705
706
707
708
709
710
      eval_iterator = self._get_input_iterator(eval_input_fn, strategy)
      eval_metric_result = self._run_evaluation(test_step, current_step,
                                                eval_metric, eval_iterator)
      logging.info('Step: %s evalation metric = %s.', current_step,
                   eval_metric_result)
      summary_writer(metrics=eval_metric_result, step=current_step)
Yeqing Li's avatar
Yeqing Li committed
711
      reset_states(eval_metric)
712

Yeqing Li's avatar
Yeqing Li committed
713
    tf.keras.backend.set_learning_phase(old_phrase)
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
    return eval_metric_result, current_step

  def predict(self):
    return NotImplementedError('Unimplmented function.')


class ExecutorBuilder(object):
  """Builder of DistributedExecutor.

  Example 1: Builds an executor with supported Strategy.
    builder = ExecutorBuilder(
        strategy_type='tpu',
        strategy_config={'tpu': '/bns/xxx'})
    dist_executor = builder.build_executor(
        params=params,
        model_fn=my_model_fn,
        loss_fn=my_loss_fn,
        metric_fn=my_metric_fn)

  Example 2: Builds an executor with customized Strategy.
    builder = ExecutorBuilder()
    builder.strategy = <some customized Strategy>
    dist_executor = builder.build_executor(
        params=params,
        model_fn=my_model_fn,
        loss_fn=my_loss_fn,
        metric_fn=my_metric_fn)

  Example 3: Builds a customized executor with customized Strategy.
    class MyDistributedExecutor(DistributedExecutor):
      # implementation ...

    builder = ExecutorBuilder()
    builder.strategy = <some customized Strategy>
    dist_executor = builder.build_executor(
        class_ctor=MyDistributedExecutor,
        params=params,
        model_fn=my_model_fn,
        loss_fn=my_loss_fn,
        metric_fn=my_metric_fn)
  """

  def __init__(self, strategy_type=None, strategy_config=None):
757
    _ = distribution_utils.configure_cluster(
Yeqing Li's avatar
Yeqing Li committed
758
        strategy_config.worker_hosts, strategy_config.task_index)
Yeqing Li's avatar
Yeqing Li committed
759
760
761
762
763
764
765
766
767
    """Constructor.

    Args:
      strategy_type: string. One of 'tpu', 'mirrored', 'multi_worker_mirrored'.
        If None. User is responsible to set the strategy before calling
        build_executor(...).
      strategy_config: necessary config for constructing the proper Strategy.
        Check strategy_flags_dict() for examples of the structure.
    """
Yeqing Li's avatar
Yeqing Li committed
768
769
770
771
772
773
    self._strategy = distribution_utils.get_distribution_strategy(
        distribution_strategy=strategy_type,
        num_gpus=strategy_config.num_gpus,
        all_reduce_alg=strategy_config.all_reduce_alg,
        num_packs=strategy_config.num_packs,
        tpu_address=strategy_config.tpu)
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816

  @property
  def strategy(self):
    """Returns default checkpoint name."""
    return self._strategy

  @strategy.setter
  def strategy(self, new_strategy):
    """Sets default summary writer for the current thread."""
    self._strategy = new_strategy

  def build_executor(self,
                     class_ctor=DistributedExecutor,
                     params=None,
                     model_fn=None,
                     loss_fn=None,
                     **kwargs):
    """Creates an executor according to strategy type.

    See doc string of the DistributedExecutor.__init__ for more information of
    the
    input arguments.

    Args:
      class_ctor: A constructor of executor (default: DistributedExecutor).
      params: ParamsDict, all the model parameters and runtime parameters.
      model_fn: Keras model function.
      loss_fn: loss function.
      **kwargs: other arguments to the executor constructor.

    Returns:
      An instance of DistributedExecutor or its subclass.
    """
    if self._strategy is None:
      raise ValueError('`strategy` should not be None. You need to specify '
                       '`strategy_type` in the builder contructor or directly '
                       'set the `strategy` property of the builder.')
    return class_ctor(
        strategy=self._strategy,
        params=params,
        model_fn=model_fn,
        loss_fn=loss_fn,
        **kwargs)