bert_benchmark.py 12.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes BERT benchmarks and accuracy tests."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json
22
import math
23
24
25
import os
import time

26
# pylint: disable=g-bad-import-order
27
28
from absl import flags
from absl.testing import flagsaver
29
import tensorflow as tf
30
# pylint: enable=g-bad-import-order
31

32
from official.benchmark import bert_benchmark_utils as benchmark_utils
33
34
from official.nlp import bert_modeling as modeling
from official.nlp.bert import run_classifier
35
from official.utils.misc import distribution_utils
36
37

# pylint: disable=line-too-long
38
PRETRAINED_CHECKPOINT_PATH = 'gs://cloud-tpu-checkpoints/bert/tf_20/uncased_L-24_H-1024_A-16/bert_model.ckpt'
39
40
41
CLASSIFIER_TRAIN_DATA_PATH = 'gs://tf-perfzero-data/bert/classification/mrpc_train.tf_record'
CLASSIFIER_EVAL_DATA_PATH = 'gs://tf-perfzero-data/bert/classification/mrpc_eval.tf_record'
CLASSIFIER_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/classification/mrpc_meta_data'
42
MODEL_CONFIG_FILE_PATH = 'gs://cloud-tpu-checkpoints/bert/tf_20/uncased_L-24_H-1024_A-16/bert_config'
43
44
45
46
47
# pylint: enable=line-too-long

FLAGS = flags.FLAGS


davidmochen's avatar
davidmochen committed
48
class BertClassifyBenchmarkBase(benchmark_utils.BertBenchmarkBase):
49
50
51
  """Base class to hold methods common to test classes in the module."""

  def __init__(self, output_dir=None):
52
    super(BertClassifyBenchmarkBase, self).__init__(output_dir)
53
54
55
    self.num_epochs = None
    self.num_steps_per_epoch = None

56
  @flagsaver.flagsaver
57
  def _run_bert_classifier(self, callbacks=None, use_ds=True):
58
    """Starts BERT classification task."""
59
60
61
    with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
      input_meta_data = json.loads(reader.read().decode('utf-8'))

62
    bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
63
64
65
66
67
68
69
    epochs = self.num_epochs if self.num_epochs else FLAGS.num_train_epochs
    if self.num_steps_per_epoch:
      steps_per_epoch = self.num_steps_per_epoch
    else:
      train_data_size = input_meta_data['train_data_size']
      steps_per_epoch = int(train_data_size / FLAGS.train_batch_size)
    warmup_steps = int(epochs * steps_per_epoch * 0.1)
70
71
72
    eval_steps = int(
        math.ceil(input_meta_data['eval_data_size'] / FLAGS.eval_batch_size))
    strategy = distribution_utils.get_distribution_strategy(
73
74
75
        distribution_strategy='mirrored' if use_ds else 'off',
        num_gpus=self.num_gpus)

76
    steps_per_loop = 1
77
78
79
80
81
82
83
84

    run_classifier.run_customized_training(
        strategy,
        bert_config,
        input_meta_data,
        FLAGS.model_dir,
        epochs,
        steps_per_epoch,
85
        steps_per_loop,
86
87
88
89
90
91
92
        eval_steps,
        warmup_steps,
        FLAGS.learning_rate,
        FLAGS.init_checkpoint,
        custom_callbacks=callbacks)


davidmochen's avatar
davidmochen committed
93
class BertClassifyBenchmarkReal(BertClassifyBenchmarkBase):
94
95
96
97
98
99
  """Short benchmark performance tests for BERT model.

  Tests BERT classification performance in different GPU configurations.
  The naming convention of below test cases follow
  `benchmark_(number of gpus)_gpu_(dataset type)` format.
  """
100
101

  def __init__(self, output_dir=None, **kwargs):
102
103
    super(BertClassifyBenchmarkReal, self).__init__(output_dir=output_dir)

104
105
106
107
    self.train_data_path = CLASSIFIER_TRAIN_DATA_PATH
    self.eval_data_path = CLASSIFIER_EVAL_DATA_PATH
    self.bert_config_file = MODEL_CONFIG_FILE_PATH
    self.input_meta_data_path = CLASSIFIER_INPUT_META_DATA_PATH
108

109
110
111
112
113
    # Since we only care about performance metrics, we limit
    # the number of training steps and epochs to prevent unnecessarily
    # long tests.
    self.num_steps_per_epoch = 110
    self.num_epochs = 1
114

115
116
117
  def _run_and_report_benchmark(self,
                                training_summary_path,
                                min_accuracy=0,
118
                                max_accuracy=1,
119
                                use_ds=True):
120
121
    """Starts BERT performance benchmark test."""
    start_time_sec = time.time()
122
    self._run_bert_classifier(callbacks=[self.timer_callback], use_ds=use_ds)
123
124
125
126
127
128
129
130
    wall_time_sec = time.time() - start_time_sec

    with tf.io.gfile.GFile(training_summary_path, 'rb') as reader:
      summary = json.loads(reader.read().decode('utf-8'))

    # Since we do not load from any pretrained checkpoints, we ignore all
    # accuracy metrics.
    summary.pop('eval_metrics', None)
131
    super(BertClassifyBenchmarkReal, self)._report_benchmark(
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
        stats=summary,
        wall_time_sec=wall_time_sec,
        min_accuracy=min_accuracy,
        max_accuracy=max_accuracy)

  def benchmark_1_gpu_mrpc(self):
    """Test BERT model performance with 1 GPU."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_mrpc')
    FLAGS.train_data_path = self.train_data_path
    FLAGS.eval_data_path = self.eval_data_path
    FLAGS.input_meta_data_path = self.input_meta_data_path
    FLAGS.bert_config_file = self.bert_config_file
    FLAGS.train_batch_size = 4
    FLAGS.eval_batch_size = 4

    summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt')
    self._run_and_report_benchmark(summary_path)

153
154
155
156
157
158
159
160
161
162
163
164
  def benchmark_1_gpu_mrpc_xla(self):
    """Test BERT model performance with 1 GPU."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_mrpc_xla')
    FLAGS.train_data_path = self.train_data_path
    FLAGS.eval_data_path = self.eval_data_path
    FLAGS.input_meta_data_path = self.input_meta_data_path
    FLAGS.bert_config_file = self.bert_config_file
    FLAGS.train_batch_size = 4
    FLAGS.eval_batch_size = 4
165
    FLAGS.enable_xla = True
166
167

    summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt')
168
    self._run_and_report_benchmark(summary_path)
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

  def benchmark_1_gpu_mrpc_no_dist_strat(self):
    """Test BERT model performance with 1 GPU, no distribution strategy."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_mrpc_no_dist_strat')
    FLAGS.train_data_path = self.train_data_path
    FLAGS.eval_data_path = self.eval_data_path
    FLAGS.input_meta_data_path = self.input_meta_data_path
    FLAGS.bert_config_file = self.bert_config_file
    FLAGS.train_batch_size = 4
    FLAGS.eval_batch_size = 4

    summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt')
    self._run_and_report_benchmark(summary_path, use_ds=False)

186
  def benchmark_2_gpu_mrpc(self):
187
188
189
190
    """Test BERT model performance with 2 GPUs."""

    self._setup()
    self.num_gpus = 2
191
    FLAGS.model_dir = self._get_model_dir('benchmark_2_gpu_mrpc')
192
193
194
195
196
197
    FLAGS.train_data_path = self.train_data_path
    FLAGS.eval_data_path = self.eval_data_path
    FLAGS.input_meta_data_path = self.input_meta_data_path
    FLAGS.bert_config_file = self.bert_config_file
    FLAGS.train_batch_size = 8
    FLAGS.eval_batch_size = 8
198

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
    summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt')
    self._run_and_report_benchmark(summary_path)

  def benchmark_4_gpu_mrpc(self):
    """Test BERT model performance with 4 GPUs."""

    self._setup()
    self.num_gpus = 4
    FLAGS.model_dir = self._get_model_dir('benchmark_4_gpu_mrpc')
    FLAGS.train_data_path = self.train_data_path
    FLAGS.eval_data_path = self.eval_data_path
    FLAGS.input_meta_data_path = self.input_meta_data_path
    FLAGS.bert_config_file = self.bert_config_file
    FLAGS.train_batch_size = 16

    summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt')
    self._run_and_report_benchmark(summary_path)

  def benchmark_8_gpu_mrpc(self):
218
219
220
    """Test BERT model performance with 8 GPUs."""

    self._setup()
221
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_mrpc')
222
223
224
225
226
227
228
229
    FLAGS.train_data_path = self.train_data_path
    FLAGS.eval_data_path = self.eval_data_path
    FLAGS.input_meta_data_path = self.input_meta_data_path
    FLAGS.bert_config_file = self.bert_config_file

    summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt')
    self._run_and_report_benchmark(summary_path)

230
  def benchmark_1_gpu_amp_mrpc_no_dist_strat(self):
231
    """Performance for 1 GPU no DS with automatic mixed precision."""
232
233
    self._setup()
    self.num_gpus = 1
234
235
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_amp_mrpc_no_dist_strat')
236
237
238
239
240
241
242
243
244
245
246
247
248
    FLAGS.train_data_path = self.train_data_path
    FLAGS.eval_data_path = self.eval_data_path
    FLAGS.input_meta_data_path = self.input_meta_data_path
    FLAGS.bert_config_file = self.bert_config_file
    FLAGS.train_batch_size = 4
    FLAGS.eval_batch_size = 4
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'

    summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt')
    self._run_and_report_benchmark(summary_path, use_ds=False)

  def benchmark_8_gpu_amp_mrpc(self):
249
250
    """Test BERT model performance with 8 GPUs with automatic mixed precision.
    """
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp_mrpc')
    FLAGS.train_data_path = self.train_data_path
    FLAGS.eval_data_path = self.eval_data_path
    FLAGS.input_meta_data_path = self.input_meta_data_path
    FLAGS.bert_config_file = self.bert_config_file
    FLAGS.train_batch_size = 32
    FLAGS.eval_batch_size = 32
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'

    summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt')
    self._run_and_report_benchmark(summary_path, use_ds=False)
266
267


davidmochen's avatar
davidmochen committed
268
class BertClassifyAccuracy(BertClassifyBenchmarkBase):
269
270
271
272
273
274
  """Short accuracy test for BERT model.

  Tests BERT classification task model accuracy. The naming
  convention of below test cases follow
  `benchmark_(number of gpus)_gpu_(dataset type)` format.
  """
275
276
277
278
279
280

  def __init__(self, output_dir=None, **kwargs):
    self.train_data_path = CLASSIFIER_TRAIN_DATA_PATH
    self.eval_data_path = CLASSIFIER_EVAL_DATA_PATH
    self.bert_config_file = MODEL_CONFIG_FILE_PATH
    self.input_meta_data_path = CLASSIFIER_INPUT_META_DATA_PATH
281
    self.pretrained_checkpoint_path = PRETRAINED_CHECKPOINT_PATH
282

283
    super(BertClassifyAccuracy, self).__init__(output_dir=output_dir)
284

285
286
287
  def _run_and_report_benchmark(self,
                                training_summary_path,
                                min_accuracy=0.84,
288
                                max_accuracy=0.88):
289
290
    """Starts BERT accuracy benchmark test."""

291
    start_time_sec = time.time()
292
    self._run_bert_classifier(callbacks=[self.timer_callback])
293
294
    wall_time_sec = time.time() - start_time_sec

295
296
297
    with tf.io.gfile.GFile(training_summary_path, 'rb') as reader:
      summary = json.loads(reader.read().decode('utf-8'))

298
299
300
301
302
    super(BertClassifyAccuracy, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
        min_accuracy=min_accuracy,
        max_accuracy=max_accuracy)
303

304
305
306
307
308
309
310
311
  def _setup(self):
    super(BertClassifyAccuracy, self)._setup()
    FLAGS.train_data_path = self.train_data_path
    FLAGS.eval_data_path = self.eval_data_path
    FLAGS.input_meta_data_path = self.input_meta_data_path
    FLAGS.bert_config_file = self.bert_config_file
    FLAGS.init_checkpoint = self.pretrained_checkpoint_path

312
313
314
315
316
317
318
  def benchmark_8_gpu_mrpc(self):
    """Run BERT model accuracy test with 8 GPUs.

    Due to comparatively small cardinality of  MRPC dataset, training
    accuracy metric has high variance between trainings. As so, we
    set the wide range of allowed accuracy (84% to 88%).
    """
319
    self._setup()
320
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_mrpc')
321

322
323
    summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt')
    self._run_and_report_benchmark(summary_path)
324

325
326
327
328
  def benchmark_8_gpu_mrpc_xla(self):
    """Run BERT model accuracy test with 8 GPUs with XLA."""
    self._setup()
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_mrpc_xla')
329
    FLAGS.enable_xla = True
330
    summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt')
331
    self._run_and_report_benchmark(summary_path)
332

333
334
335

if __name__ == '__main__':
  tf.test.main()