maskrcnn.py 18.3 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14
15

# Lint as: python3
Abdullah Rashwan's avatar
Abdullah Rashwan committed
16
17
18
19
"""Mask R-CNN configuration definition."""

import os
from typing import List, Optional
Abdullah Rashwan's avatar
Abdullah Rashwan committed
20

Abdullah Rashwan's avatar
Abdullah Rashwan committed
21
import dataclasses
Abdullah Rashwan's avatar
Abdullah Rashwan committed
22

23
from official.core import config_definitions as cfg
Abdullah Rashwan's avatar
Abdullah Rashwan committed
24
25
26
27
28
from official.core import exp_factory
from official.modeling import hyperparams
from official.modeling import optimization
from official.vision.beta.configs import common
from official.vision.beta.configs import decoders
Abdullah Rashwan's avatar
Abdullah Rashwan committed
29
from official.vision.beta.configs import backbones
Abdullah Rashwan's avatar
Abdullah Rashwan committed
30
31
32
33
34
35


# pylint: disable=missing-class-docstring
@dataclasses.dataclass
class TfExampleDecoder(hyperparams.Config):
  regenerate_source_id: bool = False
36
  mask_binarize_threshold: Optional[float] = None
Abdullah Rashwan's avatar
Abdullah Rashwan committed
37
38
39
40
41


@dataclasses.dataclass
class TfExampleDecoderLabelMap(hyperparams.Config):
  regenerate_source_id: bool = False
42
  mask_binarize_threshold: Optional[float] = None
Abdullah Rashwan's avatar
Abdullah Rashwan committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
  label_map: str = ''


@dataclasses.dataclass
class DataDecoder(hyperparams.OneOfConfig):
  type: Optional[str] = 'simple_decoder'
  simple_decoder: TfExampleDecoder = TfExampleDecoder()
  label_map_decoder: TfExampleDecoderLabelMap = TfExampleDecoderLabelMap()


@dataclasses.dataclass
class Parser(hyperparams.Config):
  num_channels: int = 3
  match_threshold: float = 0.5
  unmatched_threshold: float = 0.5
  aug_rand_hflip: bool = False
  aug_scale_min: float = 1.0
  aug_scale_max: float = 1.0
  skip_crowd_during_training: bool = True
  max_num_instances: int = 100
  rpn_match_threshold: float = 0.7
  rpn_unmatched_threshold: float = 0.3
  rpn_batch_size_per_im: int = 256
  rpn_fg_fraction: float = 0.5
  mask_crop_size: int = 112


@dataclasses.dataclass
class DataConfig(cfg.DataConfig):
  """Input config for training."""
  input_path: str = ''
  global_batch_size: int = 0
  is_training: bool = False
  dtype: str = 'bfloat16'
  decoder: DataDecoder = DataDecoder()
  parser: Parser = Parser()
  shuffle_buffer_size: int = 10000
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
80
  file_type: str = 'tfrecord'
Abdullah Rashwan's avatar
Abdullah Rashwan committed
81
  drop_remainder: bool = True
Abdullah Rashwan's avatar
Abdullah Rashwan committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105


@dataclasses.dataclass
class Anchor(hyperparams.Config):
  num_scales: int = 1
  aspect_ratios: List[float] = dataclasses.field(
      default_factory=lambda: [0.5, 1.0, 2.0])
  anchor_size: float = 8.0


@dataclasses.dataclass
class RPNHead(hyperparams.Config):
  num_convs: int = 1
  num_filters: int = 256
  use_separable_conv: bool = False


@dataclasses.dataclass
class DetectionHead(hyperparams.Config):
  num_convs: int = 4
  num_filters: int = 256
  use_separable_conv: bool = False
  num_fcs: int = 1
  fc_dims: int = 1024
Xianzhi Du's avatar
Xianzhi Du committed
106
107
108
109
  class_agnostic_bbox_pred: bool = False  # Has to be True for Cascade RCNN.
  # If additional IoUs are passed in 'cascade_iou_thresholds'
  # then ensemble the class probabilities from all heads.
  cascade_class_ensemble: bool = False
Abdullah Rashwan's avatar
Abdullah Rashwan committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134


@dataclasses.dataclass
class ROIGenerator(hyperparams.Config):
  pre_nms_top_k: int = 2000
  pre_nms_score_threshold: float = 0.0
  pre_nms_min_size_threshold: float = 0.0
  nms_iou_threshold: float = 0.7
  num_proposals: int = 1000
  test_pre_nms_top_k: int = 1000
  test_pre_nms_score_threshold: float = 0.0
  test_pre_nms_min_size_threshold: float = 0.0
  test_nms_iou_threshold: float = 0.7
  test_num_proposals: int = 1000
  use_batched_nms: bool = False


@dataclasses.dataclass
class ROISampler(hyperparams.Config):
  mix_gt_boxes: bool = True
  num_sampled_rois: int = 512
  foreground_fraction: float = 0.25
  foreground_iou_threshold: float = 0.5
  background_iou_high_threshold: float = 0.5
  background_iou_low_threshold: float = 0.0
Xianzhi Du's avatar
Xianzhi Du committed
135
136
137
  # IoU thresholds for additional FRCNN heads in Cascade mode.
  # `foreground_iou_threshold` is the first threshold.
  cascade_iou_thresholds: Optional[List[float]] = None
Abdullah Rashwan's avatar
Abdullah Rashwan committed
138
139
140
141
142
143
144
145
146
147


@dataclasses.dataclass
class ROIAligner(hyperparams.Config):
  crop_size: int = 7
  sample_offset: float = 0.5


@dataclasses.dataclass
class DetectionGenerator(hyperparams.Config):
Fan Yang's avatar
Fan Yang committed
148
  apply_nms: bool = True
Abdullah Rashwan's avatar
Abdullah Rashwan committed
149
150
151
152
153
154
155
156
157
158
159
160
161
  pre_nms_top_k: int = 5000
  pre_nms_score_threshold: float = 0.05
  nms_iou_threshold: float = 0.5
  max_num_detections: int = 100
  use_batched_nms: bool = False


@dataclasses.dataclass
class MaskHead(hyperparams.Config):
  upsample_factor: int = 2
  num_convs: int = 4
  num_filters: int = 256
  use_separable_conv: bool = False
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
162
  class_agnostic: bool = False
Abdullah Rashwan's avatar
Abdullah Rashwan committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218


@dataclasses.dataclass
class MaskSampler(hyperparams.Config):
  num_sampled_masks: int = 128


@dataclasses.dataclass
class MaskROIAligner(hyperparams.Config):
  crop_size: int = 14
  sample_offset: float = 0.5


@dataclasses.dataclass
class MaskRCNN(hyperparams.Config):
  num_classes: int = 0
  input_size: List[int] = dataclasses.field(default_factory=list)
  min_level: int = 2
  max_level: int = 6
  anchor: Anchor = Anchor()
  include_mask: bool = True
  backbone: backbones.Backbone = backbones.Backbone(
      type='resnet', resnet=backbones.ResNet())
  decoder: decoders.Decoder = decoders.Decoder(
      type='fpn', fpn=decoders.FPN())
  rpn_head: RPNHead = RPNHead()
  detection_head: DetectionHead = DetectionHead()
  roi_generator: ROIGenerator = ROIGenerator()
  roi_sampler: ROISampler = ROISampler()
  roi_aligner: ROIAligner = ROIAligner()
  detection_generator: DetectionGenerator = DetectionGenerator()
  mask_head: Optional[MaskHead] = MaskHead()
  mask_sampler: Optional[MaskSampler] = MaskSampler()
  mask_roi_aligner: Optional[MaskROIAligner] = MaskROIAligner()
  norm_activation: common.NormActivation = common.NormActivation(
      norm_momentum=0.997,
      norm_epsilon=0.0001,
      use_sync_bn=True)


@dataclasses.dataclass
class Losses(hyperparams.Config):
  rpn_huber_loss_delta: float = 1. / 9.
  frcnn_huber_loss_delta: float = 1.
  l2_weight_decay: float = 0.0
  rpn_score_weight: float = 1.0
  rpn_box_weight: float = 1.0
  frcnn_class_weight: float = 1.0
  frcnn_box_weight: float = 1.0
  mask_weight: float = 1.0


@dataclasses.dataclass
class MaskRCNNTask(cfg.TaskConfig):
  model: MaskRCNN = MaskRCNN()
  train_data: DataConfig = DataConfig(is_training=True)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
219
220
  validation_data: DataConfig = DataConfig(is_training=False,
                                           drop_remainder=False)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
221
222
223
224
  losses: Losses = Losses()
  init_checkpoint: Optional[str] = None
  init_checkpoint_modules: str = 'all'  # all or backbone
  annotation_file: Optional[str] = None
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
225
  per_category_metrics: bool = False
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
226
227
  # If set, we only use masks for the specified class IDs.
  allowed_mask_class_ids: Optional[List[int]] = None
Abdullah Rashwan's avatar
Abdullah Rashwan committed
228
229
230
231
232
233
234
235
236
237


COCO_INPUT_PATH_BASE = 'coco'


@exp_factory.register_config_factory('fasterrcnn_resnetfpn_coco')
def fasterrcnn_resnetfpn_coco() -> cfg.ExperimentConfig:
  """COCO object detection with Faster R-CNN."""
  steps_per_epoch = 500
  coco_val_samples = 5000
Xianzhi Du's avatar
Xianzhi Du committed
238
239
  train_batch_size = 64
  eval_batch_size = 8
Abdullah Rashwan's avatar
Abdullah Rashwan committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258

  config = cfg.ExperimentConfig(
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
      task=MaskRCNNTask(
          init_checkpoint='gs://cloud-tpu-checkpoints/vision-2.0/resnet50_imagenet/ckpt-28080',
          init_checkpoint_modules='backbone',
          annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
                                       'instances_val2017.json'),
          model=MaskRCNN(
              num_classes=91,
              input_size=[1024, 1024, 3],
              include_mask=False,
              mask_head=None,
              mask_sampler=None,
              mask_roi_aligner=None),
          losses=Losses(l2_weight_decay=0.00004),
          train_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
              is_training=True,
Xianzhi Du's avatar
Xianzhi Du committed
259
              global_batch_size=train_batch_size,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
260
261
262
263
264
              parser=Parser(
                  aug_rand_hflip=True, aug_scale_min=0.8, aug_scale_max=1.25)),
          validation_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
              is_training=False,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
265
266
              global_batch_size=eval_batch_size,
              drop_remainder=False)),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
267
268
      trainer=cfg.TrainerConfig(
          train_steps=22500,
Xianzhi Du's avatar
Xianzhi Du committed
269
          validation_steps=coco_val_samples // eval_batch_size,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
          validation_interval=steps_per_epoch,
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [15000, 20000],
                      'values': [0.12, 0.012, 0.0012],
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 500,
                      'warmup_learning_rate': 0.0067
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])
  return config


@exp_factory.register_config_factory('maskrcnn_resnetfpn_coco')
def maskrcnn_resnetfpn_coco() -> cfg.ExperimentConfig:
  """COCO object detection with Mask R-CNN."""
  steps_per_epoch = 500
  coco_val_samples = 5000
Xianzhi Du's avatar
Xianzhi Du committed
308
309
  train_batch_size = 64
  eval_batch_size = 8
Abdullah Rashwan's avatar
Abdullah Rashwan committed
310

Xianzhi Du's avatar
Xianzhi Du committed
311
312
313
314
315
316
317
318
319
320
321
322
323
  config = cfg.ExperimentConfig(
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
      task=MaskRCNNTask(
          init_checkpoint='gs://cloud-tpu-checkpoints/vision-2.0/resnet50_imagenet/ckpt-28080',
          init_checkpoint_modules='backbone',
          annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
                                       'instances_val2017.json'),
          model=MaskRCNN(
              num_classes=91, input_size=[1024, 1024, 3], include_mask=True),
          losses=Losses(l2_weight_decay=0.00004),
          train_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
              is_training=True,
Xianzhi Du's avatar
Xianzhi Du committed
324
              global_batch_size=train_batch_size,
Xianzhi Du's avatar
Xianzhi Du committed
325
326
327
328
329
              parser=Parser(
                  aug_rand_hflip=True, aug_scale_min=0.8, aug_scale_max=1.25)),
          validation_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
              is_training=False,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
330
331
              global_batch_size=eval_batch_size,
              drop_remainder=False)),
Xianzhi Du's avatar
Xianzhi Du committed
332
333
      trainer=cfg.TrainerConfig(
          train_steps=22500,
Xianzhi Du's avatar
Xianzhi Du committed
334
          validation_steps=coco_val_samples // eval_batch_size,
Xianzhi Du's avatar
Xianzhi Du committed
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
          validation_interval=steps_per_epoch,
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [15000, 20000],
                      'values': [0.12, 0.012, 0.0012],
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 500,
                      'warmup_learning_rate': 0.0067
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])
  return config


Xianzhi Du's avatar
Xianzhi Du committed
368
369
370
371
@exp_factory.register_config_factory('maskrcnn_spinenet_coco')
def maskrcnn_spinenet_coco() -> cfg.ExperimentConfig:
  """COCO object detection with Mask R-CNN with SpineNet backbone."""
  steps_per_epoch = 463
Xianzhi Du's avatar
Xianzhi Du committed
372
  coco_val_samples = 5000
Xianzhi Du's avatar
Xianzhi Du committed
373
374
  train_batch_size = 256
  eval_batch_size = 8
Xianzhi Du's avatar
Xianzhi Du committed
375

Abdullah Rashwan's avatar
Abdullah Rashwan committed
376
377
378
379
380
381
  config = cfg.ExperimentConfig(
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
      task=MaskRCNNTask(
          annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
                                       'instances_val2017.json'),
          model=MaskRCNN(
Xianzhi Du's avatar
Xianzhi Du committed
382
383
384
385
386
387
388
389
390
391
392
              backbone=backbones.Backbone(
                  type='spinenet',
                  spinenet=backbones.SpineNet(
                      model_id='49',
                      min_level=3,
                      max_level=7,
                  )),
              decoder=decoders.Decoder(
                  type='identity', identity=decoders.Identity()),
              anchor=Anchor(anchor_size=3),
              norm_activation=common.NormActivation(use_sync_bn=True),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
393
              num_classes=91,
Xianzhi Du's avatar
Xianzhi Du committed
394
395
396
397
              input_size=[640, 640, 3],
              min_level=3,
              max_level=7,
              include_mask=True),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
398
399
400
401
          losses=Losses(l2_weight_decay=0.00004),
          train_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
              is_training=True,
Xianzhi Du's avatar
Xianzhi Du committed
402
              global_batch_size=train_batch_size,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
403
              parser=Parser(
Xianzhi Du's avatar
Xianzhi Du committed
404
                  aug_rand_hflip=True, aug_scale_min=0.5, aug_scale_max=2.0)),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
405
406
407
          validation_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
              is_training=False,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
408
409
              global_batch_size=eval_batch_size,
              drop_remainder=False)),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
410
      trainer=cfg.TrainerConfig(
Xianzhi Du's avatar
Xianzhi Du committed
411
412
          train_steps=steps_per_epoch * 350,
          validation_steps=coco_val_samples // eval_batch_size,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
413
414
415
416
417
418
419
420
421
422
423
424
425
426
          validation_interval=steps_per_epoch,
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
Xianzhi Du's avatar
Xianzhi Du committed
427
428
429
430
                      'boundaries': [
                          steps_per_epoch * 320, steps_per_epoch * 340
                      ],
                      'values': [0.32, 0.032, 0.0032],
Abdullah Rashwan's avatar
Abdullah Rashwan committed
431
432
433
434
435
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
Xianzhi Du's avatar
Xianzhi Du committed
436
                      'warmup_steps': 2000,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
437
438
439
440
441
442
                      'warmup_learning_rate': 0.0067
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
Xianzhi Du's avatar
Xianzhi Du committed
443
444
445
          'task.validation_data.is_training != None',
          'task.model.min_level == task.model.backbone.spinenet.min_level',
          'task.model.max_level == task.model.backbone.spinenet.max_level',
Abdullah Rashwan's avatar
Abdullah Rashwan committed
446
447
448
449
      ])
  return config


Xianzhi Du's avatar
Xianzhi Du committed
450
451
452
@exp_factory.register_config_factory('cascadercnn_spinenet_coco')
def cascadercnn_spinenet_coco() -> cfg.ExperimentConfig:
  """COCO object detection with Cascade R-CNN with SpineNet backbone."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
453
454
  steps_per_epoch = 463
  coco_val_samples = 5000
Xianzhi Du's avatar
Xianzhi Du committed
455
456
  train_batch_size = 256
  eval_batch_size = 8
Abdullah Rashwan's avatar
Abdullah Rashwan committed
457
458
459
460
461
462
463
464

  config = cfg.ExperimentConfig(
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
      task=MaskRCNNTask(
          annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
                                       'instances_val2017.json'),
          model=MaskRCNN(
              backbone=backbones.Backbone(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
465
466
467
468
469
470
                  type='spinenet',
                  spinenet=backbones.SpineNet(
                      model_id='49',
                      min_level=3,
                      max_level=7,
                  )),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
471
472
              decoder=decoders.Decoder(
                  type='identity', identity=decoders.Identity()),
Xianzhi Du's avatar
Xianzhi Du committed
473
474
475
              roi_sampler=ROISampler(cascade_iou_thresholds=[0.6, 0.7]),
              detection_head=DetectionHead(
                  class_agnostic_bbox_pred=True, cascade_class_ensemble=True),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
476
              anchor=Anchor(anchor_size=3),
Xianzhi Du's avatar
Xianzhi Du committed
477
478
              norm_activation=common.NormActivation(
                  use_sync_bn=True, activation='swish'),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
479
480
481
482
483
484
485
486
487
              num_classes=91,
              input_size=[640, 640, 3],
              min_level=3,
              max_level=7,
              include_mask=True),
          losses=Losses(l2_weight_decay=0.00004),
          train_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
              is_training=True,
Xianzhi Du's avatar
Xianzhi Du committed
488
              global_batch_size=train_batch_size,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
489
              parser=Parser(
Xianzhi Du's avatar
Xianzhi Du committed
490
                  aug_rand_hflip=True, aug_scale_min=0.1, aug_scale_max=2.5)),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
491
492
493
          validation_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
              is_training=False,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
494
495
              global_batch_size=eval_batch_size,
              drop_remainder=False)),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
496
      trainer=cfg.TrainerConfig(
Xianzhi Du's avatar
Xianzhi Du committed
497
498
          train_steps=steps_per_epoch * 500,
          validation_steps=coco_val_samples // eval_batch_size,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
          validation_interval=steps_per_epoch,
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [
Xianzhi Du's avatar
Xianzhi Du committed
514
                          steps_per_epoch * 475, steps_per_epoch * 490
Abdullah Rashwan's avatar
Abdullah Rashwan committed
515
                      ],
Xianzhi Du's avatar
Xianzhi Du committed
516
                      'values': [0.32, 0.032, 0.0032],
Abdullah Rashwan's avatar
Abdullah Rashwan committed
517
518
519
520
521
522
523
524
525
526
527
528
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 2000,
                      'warmup_learning_rate': 0.0067
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
529
          'task.validation_data.is_training != None',
Xianzhi Du's avatar
Xianzhi Du committed
530
531
          'task.model.min_level == task.model.backbone.spinenet.min_level',
          'task.model.max_level == task.model.backbone.spinenet.max_level',
Abdullah Rashwan's avatar
Abdullah Rashwan committed
532
533
      ])
  return config