movinet_tutorial.ipynb 20.4 KB
Newer Older
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "3E96e1UKQ8uR"
      },
      "source": [
        "# MoViNet Tutorial\n",
        "\n",
        "This notebook provides basic example code to create, build, and run [MoViNets (Mobile Video Networks)](https://arxiv.org/pdf/2103.11511.pdf). Models use TF Keras and support inference in TF 1 and TF 2. Pretrained models are provided by [TensorFlow Hub](https://tfhub.dev/google/collections/movinet/), trained on [Kinetics 600](https://deepmind.com/research/open-source/kinetics) for video action classification."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "8_oLnvJy7kz5"
      },
      "source": [
        "## Setup\n",
        "\n",
        "It is recommended to run the models using GPUs or TPUs.\n",
        "\n",
        "To select a GPU/TPU in Colab, select `Runtime \u003e Change runtime type \u003e Hardware accelerator` dropdown in the top menu.\n",
        "\n",
        "### Install the TensorFlow Model Garden pip package\n",
        "\n",
        "- tf-models-official is the stable Model Garden package. Note that it may not include the latest changes in the tensorflow_models github repo.\n",
        "- To include latest changes, you may install tf-models-nightly, which is the nightly Model Garden package created daily automatically.\n",
        "pip will install all models and dependencies automatically.\n",
        "\n",
        "Install the [mediapy](https://github.com/google/mediapy) package for visualizing images/videos."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "s3khsunT7kWa"
      },
      "outputs": [],
      "source": [
Dan Kondratyuk's avatar
Dan Kondratyuk committed
43
        "!pip install -q tf-models-nightly tfds-nightly\n",
Dan Kondratyuk's avatar
Dan Kondratyuk committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
        "\n",
        "!command -v ffmpeg \u003e/dev/null || (apt update \u0026\u0026 apt install -y ffmpeg)\n",
        "!pip install -q mediapy"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "dI_1csl6Q-gH"
      },
      "outputs": [],
      "source": [
        "import os\n",
        "from six.moves import urllib\n",
        "\n",
        "import matplotlib.pyplot as plt\n",
        "import mediapy as media\n",
        "import numpy as np\n",
        "from PIL import Image\n",
        "import tensorflow as tf\n",
        "import tensorflow_datasets as tfds\n",
        "import tensorflow_hub as hub\n",
        "\n",
        "from official.vision.beta.configs import video_classification\n",
Dan Kondratyuk's avatar
Dan Kondratyuk committed
69
70
71
72
        "from official.projects.movinet.configs import movinet as movinet_configs\n",
        "from official.projects.movinet.modeling import movinet\n",
        "from official.projects.movinet.modeling import movinet_layers\n",
        "from official.projects.movinet.modeling import movinet_model"
Dan Kondratyuk's avatar
Dan Kondratyuk committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "6g0tuFvf71S9"
      },
      "source": [
        "## Example Usage with TensorFlow Hub\n",
        "\n",
        "Load MoViNet-A2-Base from TensorFlow Hub, as part of the [MoViNet collection](https://tfhub.dev/google/collections/movinet/).\n",
        "\n",
        "The following code will:\n",
        "\n",
        "- Load a MoViNet KerasLayer from [tfhub.dev](https://tfhub.dev).\n",
        "- Wrap the layer in a [Keras Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model).\n",
        "- Load an example image, and reshape it to a single frame video.\n",
        "- Classify the video"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "nTUdhlRJzl2o"
      },
      "outputs": [],
      "source": [
        "movinet_a2_hub_url = 'https://tfhub.dev/tensorflow/movinet/a2/base/kinetics-600/classification/1'\n",
        "\n",
        "inputs = tf.keras.layers.Input(\n",
        "    shape=[None, None, None, 3],\n",
        "    dtype=tf.float32)\n",
        "\n",
        "encoder = hub.KerasLayer(movinet_a2_hub_url, trainable=True)\n",
        "\n",
        "# Important: To use tf.nn.conv3d on CPU, we must compile with tf.function.\n",
        "encoder.call = tf.function(encoder.call, experimental_compile=True)\n",
        "\n",
        "# [batch_size, 600]\n",
        "outputs = encoder(dict(image=inputs))\n",
        "\n",
        "model = tf.keras.Model(inputs, outputs)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "7kU1_pL10l0B"
      },
      "source": [
        "To provide a simple example video for classification, we can load a static image and reshape it to produce a video with a single frame."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "Iy0rKRrT723_"
      },
      "outputs": [],
      "source": [
        "image_url = 'https://upload.wikimedia.org/wikipedia/commons/8/84/Ski_Famille_-_Family_Ski_Holidays.jpg'\n",
        "image_height = 224\n",
        "image_width = 224\n",
        "\n",
        "with urllib.request.urlopen(image_url) as f:\n",
Dan Kondratyuk's avatar
Dan Kondratyuk committed
140
        "  image = Image.open(f).resize((image_height, image_width))\n",
Dan Kondratyuk's avatar
Dan Kondratyuk committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
        "video = tf.reshape(np.array(image), [1, 1, image_height, image_width, 3])\n",
        "video = tf.cast(video, tf.float32) / 255.\n",
        "\n",
        "image"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Yf6EefHuWfxC"
      },
      "source": [
        "Run the model and output the predicted label. Expected output should be skiing (labels 464-467). E.g., 465 = \"skiing crosscountry\".\n",
        "\n",
        "See [here](https://gist.github.com/willprice/f19da185c9c5f32847134b87c1960769#file-kinetics_600_labels-csv) for a full list of all labels."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "OOpEKuqH8sH7"
      },
      "outputs": [],
      "source": [
        "output = model(video)\n",
        "output_label_index = tf.argmax(output, -1)[0].numpy()\n",
        "\n",
        "print(output_label_index)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "_s-7bEoa3f8g"
      },
      "source": [
        "## Example Usage with the TensorFlow Model Garden\n",
        "\n",
        "Fine-tune MoViNet-A0-Base on [UCF-101](https://www.crcv.ucf.edu/research/data-sets/ucf101/).\n",
        "\n",
        "The following code will:\n",
        "\n",
        "- Load the UCF-101 dataset with [TensorFlow Datasets](https://www.tensorflow.org/datasets/catalog/ucf101).\n",
        "- Create a [`tf.data.Dataset`](https://www.tensorflow.org/api_docs/python/tf/data/Dataset) pipeline for training and evaluation.\n",
        "- Display some example videos from the dataset.\n",
        "- Build a MoViNet model and load pretrained weights.\n",
        "- Fine-tune the final classifier layers on UCF-101."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "o7unW4WVr580"
      },
      "source": [
        "### Load the UCF-101 Dataset with TensorFlow Datasets\n",
        "\n",
        "Calling `download_and_prepare()` will automatically download the dataset. After downloading, this cell will output information about the dataset."
      ]
    },
Dan Kondratyuk's avatar
Dan Kondratyuk committed
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "FxM1vNYp_YAM"
      },
      "outputs": [],
      "source": [
        "dataset_name = 'ucf101'\n",
        "\n",
        "builder = tfds.builder(dataset_name)\n",
        "\n",
        "config = tfds.download.DownloadConfig(verify_ssl=False)\n",
        "builder.download_and_prepare(download_config=config)"
      ]
    },
Dan Kondratyuk's avatar
Dan Kondratyuk committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "executionInfo": {
          "elapsed": 2957,
          "status": "ok",
          "timestamp": 1619748263684,
          "user": {
            "displayName": "",
            "photoUrl": "",
            "userId": ""
          },
          "user_tz": 360
        },
        "id": "boQHbcfDhXpJ",
        "outputId": "eabc3307-d6bf-4f29-cc5a-c8dc6360701b"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Number of classes: 101\n",
            "Number of examples for train: 9537\n",
            "Number of examples for test: 3783\n",
            "\n"
          ]
        },
        {
          "data": {
            "text/plain": [
              "tfds.core.DatasetInfo(\n",
              "    name='ucf101',\n",
              "    full_name='ucf101/ucf101_1_256/2.0.0',\n",
              "    description=\"\"\"\n",
              "    A 101-label video classification dataset.\n",
              "    \"\"\",\n",
              "    config_description=\"\"\"\n",
              "    256x256 UCF with the first action recognition split.\n",
              "    \"\"\",\n",
              "    homepage='https://www.crcv.ucf.edu/data-sets/ucf101/',\n",
              "    data_path='/readahead/128M/placer/prod/home/tensorflow-datasets-cns-storage-owner/datasets/ucf101/ucf101_1_256/2.0.0',\n",
              "    download_size=6.48 GiB,\n",
              "    dataset_size=Unknown size,\n",
              "    features=FeaturesDict({\n",
              "        'label': ClassLabel(shape=(), dtype=tf.int64, num_classes=101),\n",
              "        'video': Video(Image(shape=(256, 256, 3), dtype=tf.uint8)),\n",
              "    }),\n",
              "    supervised_keys=None,\n",
              "    splits={\n",
              "        'test': \u003cSplitInfo num_examples=3783, num_shards=32\u003e,\n",
              "        'train': \u003cSplitInfo num_examples=9537, num_shards=64\u003e,\n",
              "    },\n",
              "    citation=\"\"\"@article{DBLP:journals/corr/abs-1212-0402,\n",
              "      author    = {Khurram Soomro and\n",
              "                   Amir Roshan Zamir and\n",
              "                   Mubarak Shah},\n",
              "      title     = {{UCF101:} {A} Dataset of 101 Human Actions Classes From Videos in\n",
              "                   The Wild},\n",
              "      journal   = {CoRR},\n",
              "      volume    = {abs/1212.0402},\n",
              "      year      = {2012},\n",
              "      url       = {http://arxiv.org/abs/1212.0402},\n",
              "      archivePrefix = {arXiv},\n",
              "      eprint    = {1212.0402},\n",
              "      timestamp = {Mon, 13 Aug 2018 16:47:45 +0200},\n",
              "      biburl    = {https://dblp.org/rec/bib/journals/corr/abs-1212-0402},\n",
              "      bibsource = {dblp computer science bibliography, https://dblp.org}\n",
              "    }\"\"\",\n",
              ")"
            ]
          },
          "execution_count": 0,
          "metadata": {
            "tags": []
          },
          "output_type": "execute_result"
        }
      ],
      "source": [
        "num_classes = builder.info.features['label'].num_classes\n",
        "num_examples = {\n",
        "    name: split.num_examples\n",
        "    for name, split in builder.info.splits.items()\n",
        "}\n",
        "\n",
        "print('Number of classes:', num_classes)\n",
        "print('Number of examples for train:', num_examples['train'])\n",
        "print('Number of examples for test:', num_examples['test'])\n",
        "print()\n",
        "\n",
        "builder.info"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "BsJJgnBBqDKZ"
      },
      "source": [
        "Build the training and evaluation datasets."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "9cO_BCu9le3r"
      },
      "outputs": [],
      "source": [
        "batch_size = 8\n",
        "num_frames = 8\n",
        "frame_stride = 10\n",
        "resolution = 172\n",
        "\n",
        "def format_features(features):\n",
        "  video = features['video']\n",
        "  video = video[:, ::frame_stride]\n",
        "  video = video[:, :num_frames]\n",
        "\n",
        "  video = tf.reshape(video, [-1, video.shape[2], video.shape[3], 3])\n",
        "  video = tf.image.resize(video, (resolution, resolution))\n",
        "  video = tf.reshape(video, [-1, num_frames, resolution, resolution, 3])\n",
        "  video = tf.cast(video, tf.float32) / 255.\n",
        "\n",
        "  label = tf.one_hot(features['label'], num_classes)\n",
        "  return (video, label)\n",
        "\n",
        "train_dataset = builder.as_dataset(\n",
        "    split='train',\n",
        "    batch_size=batch_size,\n",
        "    shuffle_files=True)\n",
        "train_dataset = train_dataset.map(\n",
        "    format_features,\n",
        "    num_parallel_calls=tf.data.AUTOTUNE)\n",
        "train_dataset = train_dataset.repeat()\n",
        "train_dataset = train_dataset.prefetch(2)\n",
        "\n",
        "test_dataset = builder.as_dataset(\n",
        "    split='test',\n",
        "    batch_size=batch_size)\n",
        "test_dataset = test_dataset.map(\n",
        "    format_features,\n",
        "    num_parallel_calls=tf.data.AUTOTUNE,\n",
        "    deterministic=True)\n",
        "test_dataset = test_dataset.prefetch(2)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "rToX7_Ymgh57"
      },
      "source": [
        "Display some example videos from the dataset."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "KG8Z7rUj06of"
      },
      "outputs": [],
      "source": [
        "videos, labels = next(iter(train_dataset))\n",
        "media.show_videos(videos.numpy(), codec='gif', fps=5)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "R3RHeuHdsd_3"
      },
      "source": [
        "### Build MoViNet-A0-Base and Load Pretrained Weights"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "JXVQOP9Rqk0I"
      },
      "source": [
        "Here we create a MoViNet model using the open source code provided in [tensorflow/models](https://github.com/tensorflow/models) and load the pretrained weights. Here we freeze the all layers except the final classifier head to speed up fine-tuning."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "JpfxpeGSsbzJ"
      },
      "outputs": [],
      "source": [
        "model_id = 'a0'\n",
        "\n",
        "tf.keras.backend.clear_session()\n",
        "\n",
        "backbone = movinet.Movinet(\n",
Dan Kondratyuk's avatar
Dan Kondratyuk committed
420
        "    model_id=model_id)\n",
Dan Kondratyuk's avatar
Dan Kondratyuk committed
421
422
        "model = movinet_model.MovinetClassifier(\n",
        "    backbone=backbone,\n",
Dan Kondratyuk's avatar
Dan Kondratyuk committed
423
        "    num_classes=600)\n",
Dan Kondratyuk's avatar
Dan Kondratyuk committed
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
        "model.build([batch_size, num_frames, resolution, resolution, 3])\n",
        "\n",
        "# Load pretrained weights from TF Hub\n",
        "movinet_hub_url = f'https://tfhub.dev/tensorflow/movinet/{model_id}/base/kinetics-600/classification/1'\n",
        "movinet_hub_model = hub.KerasLayer(movinet_hub_url, trainable=True)\n",
        "pretrained_weights = {w.name: w for w in movinet_hub_model.weights}\n",
        "model_weights = {w.name: w for w in model.weights}\n",
        "for name in pretrained_weights:\n",
        "  model_weights[name].assign(pretrained_weights[name])\n",
        "\n",
        "# Wrap the backbone with a new classifier to create a new classifier head\n",
        "# with num_classes outputs\n",
        "model = movinet_model.MovinetClassifier(\n",
        "    backbone=backbone,\n",
        "    num_classes=num_classes)\n",
        "model.build([batch_size, num_frames, resolution, resolution, 3])\n",
        "\n",
        "# Freeze all layers except for the final classifier head\n",
        "for layer in model.layers[:-1]:\n",
        "  layer.trainable = False\n",
        "model.layers[-1].trainable = True"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "ucntdu2xqgXB"
      },
      "source": [
        "Configure fine-tuning with training/evaluation steps, loss object, metrics, learning rate, optimizer, and callbacks.\n",
        "\n",
        "Here we use 3 epochs. Training for more epochs should improve accuracy."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "WUYTw48BouTu"
      },
      "outputs": [],
      "source": [
        "num_epochs = 3\n",
        "\n",
        "train_steps = num_examples['train'] // batch_size\n",
        "total_train_steps = train_steps * num_epochs\n",
        "test_steps = num_examples['test'] // batch_size\n",
        "\n",
        "loss_obj = tf.keras.losses.CategoricalCrossentropy(\n",
        "    from_logits=True,\n",
        "    label_smoothing=0.1)\n",
        "\n",
        "metrics = [\n",
        "    tf.keras.metrics.TopKCategoricalAccuracy(\n",
        "        k=1, name='top_1', dtype=tf.float32),\n",
        "    tf.keras.metrics.TopKCategoricalAccuracy(\n",
        "        k=5, name='top_5', dtype=tf.float32),\n",
        "]\n",
        "\n",
        "initial_learning_rate = 0.01\n",
        "learning_rate = tf.keras.optimizers.schedules.CosineDecay(\n",
        "    initial_learning_rate, decay_steps=total_train_steps,\n",
        ")\n",
        "optimizer = tf.keras.optimizers.RMSprop(\n",
        "    learning_rate, rho=0.9, momentum=0.9, epsilon=1.0, clipnorm=1.0)\n",
        "\n",
        "model.compile(loss=loss_obj, optimizer=optimizer, metrics=metrics)\n",
        "\n",
        "callbacks = [\n",
        "    tf.keras.callbacks.TensorBoard(),\n",
        "]"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "0IyAOOlcpHna"
      },
      "source": [
        "Run the fine-tuning with Keras compile/fit. After fine-tuning the model, we should be able to achieve \u003e70% accuracy on the test set."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "executionInfo": {
          "elapsed": 982253,
          "status": "ok",
          "timestamp": 1619750139919,
          "user": {
            "displayName": "",
            "photoUrl": "",
            "userId": ""
          },
          "user_tz": 360
        },
        "id": "Zecc_K3lga8I",
        "outputId": "e4c5c61e-aa08-47db-c04c-42dea3efb545"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Epoch 1/3\n",
            "1192/1192 [==============================] - 348s 286ms/step - loss: 3.4914 - top_1: 0.3639 - top_5: 0.6294 - val_loss: 2.5153 - val_top_1: 0.5975 - val_top_5: 0.8565\n",
            "Epoch 2/3\n",
            "1192/1192 [==============================] - 286s 240ms/step - loss: 2.1397 - top_1: 0.6794 - top_5: 0.9231 - val_loss: 2.0695 - val_top_1: 0.6838 - val_top_5: 0.9070\n",
            "Epoch 3/3\n",
            "1192/1192 [==============================] - 348s 292ms/step - loss: 1.8925 - top_1: 0.7660 - top_5: 0.9454 - val_loss: 1.9848 - val_top_1: 0.7116 - val_top_5: 0.9227\n"
          ]
        }
      ],
      "source": [
        "results = model.fit(\n",
        "    train_dataset,\n",
        "    validation_data=test_dataset,\n",
        "    epochs=num_epochs,\n",
        "    steps_per_epoch=train_steps,\n",
        "    validation_steps=test_steps,\n",
        "    callbacks=callbacks,\n",
        "    validation_freq=1,\n",
        "    verbose=1)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "XuH8XflmpU9d"
      },
      "source": [
        "We can also view the training and evaluation progress in TensorBoard."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "9fZhzhRJRd2J"
      },
      "outputs": [],
      "source": [
        "%reload_ext tensorboard\n",
        "%tensorboard --logdir logs --port 0"
      ]
    }
  ],
  "metadata": {
    "colab": {
      "collapsed_sections": [],
      "last_runtime": {
        "build_target": "//learning/deepmind/public/tools/ml_python:ml_notebook",
        "kind": "private"
      },
      "name": "movinet_tutorial.ipynb",
      "provenance": [
        {
          "file_id": "11msGCxFjxwioBOBJavP9alfTclUQCJf-",
          "timestamp": 1617043059980
        }
      ]
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}