operands_test.cc 12.5 KB
Newer Older
Terry Koo's avatar
Terry Koo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
// Copyright 2017 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================

#include "dragnn/runtime/operands.h"

#include <string.h>
#include <tuple>
#include <utility>
#include <vector>

#include "dragnn/runtime/alignment.h"
#include "dragnn/runtime/math/types.h"
#include "tensorflow/core/lib/core/status.h"
#include "tensorflow/core/lib/core/status_test_util.h"
#include "tensorflow/core/platform/test.h"

namespace syntaxnet {
namespace dragnn {
namespace runtime {
namespace {

// Expects that the two pointers are the same.
void ExpectSameAddress(const void *pointer1, const void *pointer2) {
  EXPECT_EQ(pointer1, pointer2);
}

// Sets the |vector| to |size| copies of the |value|.
template <class T>
void Fill(MutableVector<T> vector, size_t size, T value) {
  ASSERT_EQ(vector.size(), size);
  for (T &element : vector) element = value;
}

// Expects that the |vector| contains |size| copies of the |expected_value|.
template <class T>
void ExpectFilled(Vector<T> vector, size_t size, T expected_value) {
  ASSERT_EQ(vector.size(), size);
  for (const T element : vector) EXPECT_EQ(element, expected_value);
}

// Tests that OperandManager can add operands and remember their configuration.
TEST(OperandManagerTest, Add) {
  OperandManager manager;
  const OperandHandle handle1 = manager.Add({OperandType::kSingular, 7});
  const OperandHandle handle2 = manager.Add({OperandType::kStepwise, 11});

  EXPECT_EQ(manager.spec(handle1).type, OperandType::kSingular);
  EXPECT_EQ(manager.spec(handle1).size, 7);
  EXPECT_EQ(manager.spec(handle2).type, OperandType::kStepwise);
  EXPECT_EQ(manager.spec(handle2).size, 11);
}

// Tests that Operands contains operands whose dimensions match its manager.
TEST(OperandsTest, Dimensions) {
  const size_t kDim1 = 3, kDim2 = 41, kDim3 = 19, kDim4 = 77;

  OperandManager manager;
  const OperandHandle handle1 =
      manager.Add({OperandType::kSingular, kDim1 * sizeof(float)});
  const OperandHandle handle2 =
      manager.Add({OperandType::kStepwise, kDim2 * sizeof(double)});
  const OperandHandle handle3 =
      manager.Add({OperandType::kSingular, kDim3 * sizeof(float)});
  const OperandHandle handle4 =
      manager.Add({OperandType::kStepwise, kDim4 * sizeof(int)});

  AlignedView view;
  AlignedArea area;
  Operands operands;
  operands.Reset(&manager, 10);

  view = operands.GetSingular(handle1);
  EXPECT_EQ(view.size(), kDim1 * sizeof(float));
  EXPECT_EQ(Vector<float>(view).size(), kDim1);

  area = operands.GetStepwise(handle2);
  EXPECT_EQ(area.num_views(), 0);  // no steps yet
  EXPECT_EQ(area.view_size(), kDim2 * sizeof(double));
  EXPECT_EQ(Matrix<double>(area).num_rows(), 0);  // starts with no steps
  EXPECT_EQ(Matrix<double>(area).num_columns(), kDim2);

  view = operands.GetSingular(handle3);
  EXPECT_EQ(view.size(), kDim3 * sizeof(float));
  EXPECT_EQ(Vector<float>(view).size(), kDim3);

  area = operands.GetStepwise(handle4);
  EXPECT_EQ(area.num_views(), 0);  // no steps yet
  EXPECT_EQ(area.view_size(), kDim4 * sizeof(int));
  EXPECT_EQ(Matrix<int>(area).num_rows(), 0);  // starts with no steps
  EXPECT_EQ(Matrix<int>(area).num_columns(), kDim4);
}

// Tests that Operands can incrementally extend stepwise operands while
// preserving existing values.
TEST(OperandsTest, AddStepToStepwise) {
  const size_t kDim1 = 23, kDim2 = 29;

  OperandManager manager;
  const OperandHandle handle1 =
      manager.Add({OperandType::kStepwise, kDim1 * sizeof(double)});
  const OperandHandle handle2 =
      manager.Add({OperandType::kStepwise, kDim2 * sizeof(int)});

  Operands operands;
  operands.Reset(&manager, 10);

  // Repeatedly add a step and fill it with values.
  for (int i = 0; i < 100; ++i) {
    operands.AddStep();
    Fill(MutableVector<double>(operands.GetStepwise(handle1).view(i)), kDim1,
         1000.0 + i);
    Fill(MutableVector<int>(operands.GetStepwise(handle2).view(i)), kDim2,
         2000 + i);
  }

  // Check that data from earlier steps is preserved across reallocations.
  for (int i = 0; i < 100; ++i) {
    ExpectFilled(Vector<double>(operands.GetStepwise(handle1).view(i)), kDim1,
                 1000.0 + i);
    ExpectFilled(Vector<int>(operands.GetStepwise(handle2).view(i)), kDim2,
                 2000 + i);
  }
}

// Tests that Operands can add multiple steps at once.
TEST(OperandsTest, AddStepsToStepwise) {
  const size_t kDim1 = 23, kDim2 = 29;

  OperandManager manager;
  const OperandHandle handle1 =
      manager.Add({OperandType::kStepwise, kDim1 * sizeof(double)});
  const OperandHandle handle2 =
      manager.Add({OperandType::kStepwise, kDim2 * sizeof(int)});

  Operands operands;
  operands.Reset(&manager, 10);

  // Repeatedly add blocks of steps and fill them with values.
  for (int i = 0; i < 100; ++i) {
    if (i % 10 == 0) operands.AddSteps(10);  // occasionally add a block
    Fill(MutableVector<double>(operands.GetStepwise(handle1).view(i)), kDim1,
         1000.0 + i);
    Fill(MutableVector<int>(operands.GetStepwise(handle2).view(i)), kDim2,
         2000 + i);
  }

  // Check that data from earlier steps is preserved across reallocations.
  for (int i = 0; i < 100; ++i) {
    ExpectFilled(Vector<double>(operands.GetStepwise(handle1).view(i)), kDim1,
                 1000.0 + i);
    ExpectFilled(Vector<int>(operands.GetStepwise(handle2).view(i)), kDim2,
                 2000 + i);
  }
}

// Tests that Operands can add multiple steps to a pairwise operand.
TEST(OperandsTest, AddStepsPairwise) {
  const size_t kDim1 = 4, kDim2 = 31;

  OperandManager manager;
  const OperandHandle handle1 = manager.Add({OperandType::kPairwise, kDim1});
  const OperandHandle handle2 = manager.Add({OperandType::kPairwise, kDim2});

  Operands operands;
  operands.Reset(&manager, 10);

  { // A 1x1 pairwise operand.
    operands.AddSteps(1);
    const MutableAlignedArea area1 = operands.GetPairwise(handle1);
    const MutableAlignedArea area2 = operands.GetPairwise(handle2);

    EXPECT_EQ(area1.num_views(), 1);
    EXPECT_EQ(area2.num_views(), 1);

    EXPECT_EQ(area1.view_size(), kDim1);
    EXPECT_EQ(area2.view_size(), kDim2);

    // Write to operands to test the validity of the underlying memory region.
    memset(area1.view(0).data(), 0, kDim1);
    memset(area2.view(0).data(), 0, kDim2);
  }

  { // A 10x10 pairwise operand.
    operands.AddSteps(9);
    const MutableAlignedArea area1 = operands.GetPairwise(handle1);
    const MutableAlignedArea area2 = operands.GetPairwise(handle2);

    EXPECT_EQ(area1.num_views(), 10);
    EXPECT_EQ(area2.num_views(), 10);

    EXPECT_EQ(area1.view_size(), 10 * kDim1);
    EXPECT_EQ(area2.view_size(), 10 * kDim2);

    // Infer the stride by comparing pointers between consecutive views.
    const size_t expected_stride =
        PadToAlignment(10 * kDim1) + PadToAlignment(10 * kDim2);
    EXPECT_EQ(area1.view(1).data() - area1.view(0).data(), expected_stride);
    EXPECT_EQ(area2.view(1).data() - area2.view(0).data(), expected_stride);

    // Write to operands to test the validity of the underlying memory region.
    memset(area1.view(9).data(), 0, 10 * kDim1);
    memset(area2.view(9).data(), 0, 10 * kDim2);
  }
}

// Tests that Operands can be reused by resetting them repeatedly, possibly
// switching between different managers.
TEST(OperandsTest, ResetWithDifferentManagers) {
  std::vector<OperandManager> managers;
  std::vector<std::tuple<OperandHandle, OperandHandle, OperandHandle>> handles;
  for (int dim = 0; dim < 10; ++dim) {
    managers.emplace_back();
    handles.emplace_back(
        managers.back().Add({OperandType::kSingular, dim * sizeof(double)}),
        managers.back().Add({OperandType::kStepwise, dim * sizeof(int)}),
        managers.back().Add({OperandType::kPairwise, dim * sizeof(float)}));
  }

  Operands operands;
  for (int trial = 0; trial < 10; ++trial) {
    for (int dim = 0; dim < 10; ++dim) {
      operands.Reset(&managers[dim], 10);
      const OperandHandle singular_handle = std::get<0>(handles[dim]);
      const OperandHandle stepwise_handle = std::get<1>(handles[dim]);
      const OperandHandle pairwise_handle = std::get<2>(handles[dim]);

      // Fill the singular operand.
      Fill(MutableVector<double>(operands.GetSingular(singular_handle)), dim,
           100.0 * trial + dim);

      // Check the singular operands.
      ExpectFilled(Vector<double>(operands.GetSingular(singular_handle)), dim,
                   100.0 * trial + dim);

      // Repeatedly add a step and fill it with values.
      for (int step = 0; step < 100; ++step) {
        operands.AddStep();
        Fill(MutableVector<int>(
                 operands.GetStepwise(stepwise_handle).view(step)),
             dim, 1000 * trial + 100 * dim + step);
      }

      // Check that data from earlier steps is preserved across reallocations.
      for (int step = 0; step < 100; ++step) {
        ExpectFilled(
            Vector<int>(operands.GetStepwise(stepwise_handle).view(step)), dim,
            1000 * trial + 100 * dim + step);
      }

      // Check the dimensions of pairwise operands.
      Matrix<float> pairwise(operands.GetPairwise(pairwise_handle));
      EXPECT_EQ(pairwise.num_rows(), 100);
      EXPECT_EQ(pairwise.num_columns(), 100 * dim);
    }
  }
}

// Tests that one OperandManager can be shared simultaneously between multiple
// Operands instances.
TEST(OperandsTest, SharedManager) {
  const size_t kDim = 17;

  OperandManager manager;
  const OperandHandle singular_handle =
      manager.Add({OperandType::kSingular, kDim * sizeof(double)});
  const OperandHandle stepwise_handle =
      manager.Add({OperandType::kStepwise, kDim * sizeof(int)});

  std::vector<Operands> operands_vec(10);
  for (Operands &operands : operands_vec) operands.Reset(&manager, 10);

  // Fill all singular operands.
  for (int trial = 0; trial < operands_vec.size(); ++trial) {
    const Operands &operands = operands_vec[trial];
    Fill(MutableVector<double>(operands.GetSingular(singular_handle)), kDim,
         3.0 * trial);
  }

  // Check all singular operands.
  for (int trial = 0; trial < operands_vec.size(); ++trial) {
    const Operands &operands = operands_vec[trial];
    ExpectFilled(Vector<double>(operands.GetSingular(singular_handle)), kDim,
                 3.0 * trial);
  }

  // Fill all stepwise operands.  Interleave operations on the operands on each
  // step, so all operands are "active" at the same time.
  for (int step = 0; step < 100; ++step) {
    for (int trial = 0; trial < 10; ++trial) {
      Operands &operands = operands_vec[trial];
      operands.AddStep();
      Fill(MutableVector<int>(operands.GetStepwise(stepwise_handle).view(step)),
           kDim, trial * 999 + step);
    }
  }

  // Check all stepwise operands.
  for (int step = 0; step < 100; ++step) {
    for (int trial = 0; trial < 10; ++trial) {
      const Operands &operands = operands_vec[trial];
      ExpectFilled(
          Vector<int>(operands.GetStepwise(stepwise_handle).view(step)), kDim,
          trial * 999 + step);
    }
  }
}

// Tests that an Operands uses all of the pre-allocated steps and reallocates
// exactly when it exhausts the pre-allocated array.
TEST(OperandsTest, UsesPreAllocatedSteps) {
  const size_t kBytes = 5;
  const size_t kPreAllocateNumSteps = 10;

  OperandManager manager;
  const OperandHandle handle = manager.Add({OperandType::kStepwise, kBytes});

  Operands operands;
  operands.Reset(&manager, kPreAllocateNumSteps);

  // The first N steps fit exactly in the pre-allocated array.  Access the base
  // of the stepwise array via the first view.
  operands.AddStep();
  char *const pre_allocated_data = operands.GetStepwise(handle).view(0).data();
  for (size_t step = 1; step < kPreAllocateNumSteps; ++step) {
    operands.AddStep();
    ASSERT_EQ(operands.GetStepwise(handle).view(0).data(), pre_allocated_data);
  }

  // The N+1'st step triggers a reallocation, which is guaranteed to yield a new
  // pointer because it creates a separate array and copies into it.
  operands.AddStep();
  ASSERT_NE(operands.GetStepwise(handle).view(0).data(), pre_allocated_data);
}

}  // namespace
}  // namespace runtime
}  // namespace dragnn
}  // namespace syntaxnet