alignment_test.cc 25.9 KB
Newer Older
Terry Koo's avatar
Terry Koo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
// Copyright 2017 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================

#include "dragnn/runtime/alignment.h"

#include <stddef.h>
#include <string>
#include <vector>

#include "dragnn/core/test/generic.h"
#include "tensorflow/core/lib/core/status.h"
#include "tensorflow/core/lib/core/status_test_util.h"
#include "tensorflow/core/platform/test.h"

namespace syntaxnet {
namespace dragnn {
namespace runtime {
namespace {

static_assert(internal::kAlignmentBytes >= 4, "alignment too small");

// Expects that two pointers have the same address.
void ExpectSameAddress(const void *pointer1, const void *pointer2) {
  EXPECT_EQ(pointer1, pointer2);
}

// Tests that standard scalar types are alignable.
TEST(IsAlignableTest, Alignable) {
  EXPECT_TRUE(IsAlignable<char>());
  EXPECT_TRUE(IsAlignable<float>());
  EXPECT_TRUE(IsAlignable<double>());
}

// Tests that objects of odd sizes are not alignable.
TEST(IsAlignableTest, NotAlignable) {
  EXPECT_FALSE(IsAlignable<char[3]>());
  EXPECT_FALSE(IsAlignable<char[7]>());
  EXPECT_FALSE(IsAlignable<char[7919]>());
}

// Tests that OkIfAligned() returns OK on aligned pointers.
TEST(OkIfAlignedTest, Aligned) {
  const char *ptr = nullptr;
  TF_EXPECT_OK(OkIfAligned(ptr));
  ptr += internal::kAlignmentBytes;
  TF_EXPECT_OK(OkIfAligned(ptr));
  ptr += 123 * internal::kAlignmentBytes;
  TF_EXPECT_OK(OkIfAligned(ptr));
}

// Tests that OkIfAligned() returns non-OK on misaligned pointers.
TEST(OkIfAlignedTest, NotAligned) {
  const char *ptr = nullptr;
  EXPECT_THAT(OkIfAligned(ptr + 1),
              test::IsErrorWithSubstr("Pointer fails alignment requirement"));
  EXPECT_THAT(OkIfAligned(ptr + 23),
              test::IsErrorWithSubstr("Pointer fails alignment requirement"));
}

// Tests that any window of |internal::kAlignmentBytes| bytes contains exactly
// one aligned address.
TEST(OkIfAlignedTest, OnePerAlignmentWindow) {
  // Note that |bytes| does not necessarily start at an aligned address.  Even
  // so, it is still guaranteed to contain exactly one aligned address, in the
  // same sense that any sequence of 10 consecutive integers contains exactly
  // one whose decimal representation ends in '0'.  This property is exploited
  // in UniqueAlignedArray::Reset().
  const string bytes(internal::kAlignmentBytes, ' ');
  int num_ok = 0;
  for (int i = 0; i < bytes.size(); ++i) {
    if (OkIfAligned(bytes.data() + i).ok()) ++num_ok;
  }
  EXPECT_EQ(num_ok, 1);
}

// Tests that PadToAlignment() produces an aligned byte offset.
TEST(PadToAlignmentTest, Offset) {
  EXPECT_EQ(PadToAlignment(0), 0);
  EXPECT_EQ(PadToAlignment(1), internal::kAlignmentBytes);
  EXPECT_EQ(PadToAlignment(internal::kAlignmentBytes + 1),
            2 * internal::kAlignmentBytes);
  EXPECT_EQ(PadToAlignment(99 * internal::kAlignmentBytes + 3),
            100 * internal::kAlignmentBytes);
}

// Tests that PadToAlignment() produces an aligned pointer.
TEST(PadToAlignmentTest, Pointer) {
  const string bytes = "hello";
  TF_EXPECT_OK(OkIfAligned(PadToAlignment(bytes.data())));
  const std::vector<float> reals(10);
  TF_EXPECT_OK(OkIfAligned(PadToAlignment(reals.data())));
}

// Tests that ComputeAlignedAreaSize() calculates the correct size.
TEST(ComputeAlignedAreaSizeTest, Basic) {
  EXPECT_EQ(ComputeAlignedAreaSize(0, 0), 0);
  EXPECT_EQ(ComputeAlignedAreaSize(0, 1), 0);
  EXPECT_EQ(ComputeAlignedAreaSize(1, 0), 0);
  EXPECT_EQ(ComputeAlignedAreaSize(1, 1), internal::kAlignmentBytes);
  EXPECT_EQ(ComputeAlignedAreaSize(1, internal::kAlignmentBytes),
            internal::kAlignmentBytes);
  EXPECT_EQ(ComputeAlignedAreaSize(3, internal::kAlignmentBytes + 1),
            6 * internal::kAlignmentBytes);
  EXPECT_EQ(ComputeAlignedAreaSize(11, internal::kAlignmentBytes - 1),
            11 * internal::kAlignmentBytes);
  EXPECT_EQ(ComputeAlignedAreaSize(7, internal::kAlignmentBytes),
            7 * internal::kAlignmentBytes);
}

// Tests that ComputeTotalBytesWithAlignmentPadding() calculates the correct
// total size.
TEST(ComputeTotalBytesWithAlignmentPaddingTest, DifferentSizes) {
  EXPECT_EQ(ComputeTotalBytesWithAlignmentPadding({}), 0);
  EXPECT_EQ(ComputeTotalBytesWithAlignmentPadding({0}), 0);
  EXPECT_EQ(ComputeTotalBytesWithAlignmentPadding({0, 0, 0}), 0);

  EXPECT_EQ(ComputeTotalBytesWithAlignmentPadding({1}),
            internal::kAlignmentBytes);
  EXPECT_EQ(ComputeTotalBytesWithAlignmentPadding({1, 1, 1}),
            3 * internal::kAlignmentBytes);
  EXPECT_EQ(ComputeTotalBytesWithAlignmentPadding(
                {1, internal::kAlignmentBytes, internal::kAlignmentBytes + 1}),
            4 * internal::kAlignmentBytes);

  std::vector<size_t> sizes;
  for (size_t i = 1; i <= internal::kAlignmentBytes; ++i) sizes.push_back(i);
  EXPECT_EQ(ComputeTotalBytesWithAlignmentPadding(sizes),
            internal::kAlignmentBytes * internal::kAlignmentBytes);
}

// Tests that ComputeTotalBytesWithAlignmentPadding() is equivalent to
// ComputeAlignedAreaSize() when all sizes are equal.
TEST(ComputeTotalBytesWithAlignmentPaddingTest, AllSameSize) {
  EXPECT_EQ(ComputeTotalBytesWithAlignmentPadding({1, 1, 1, 1}),
            ComputeAlignedAreaSize(4, 1));
  EXPECT_EQ(ComputeTotalBytesWithAlignmentPadding({7, 7, 7, 7, 7, 7}),
            ComputeAlignedAreaSize(6, 7));
  EXPECT_EQ(ComputeTotalBytesWithAlignmentPadding({77, 77, 77}),
            ComputeAlignedAreaSize(3, 77));
}

// Tests that UniqueAlignedArray is empty by default.
TEST(UniqueAlignedArrayTest, EmptyByDefault) {
  UniqueAlignedArray array;
  EXPECT_EQ(array.view().size(), 0);
  EXPECT_TRUE(array.view().empty());
}

// Tests that UniqueAlignedArray::Reset() always reallocates.
TEST(UniqueAlignedArrayTest, Reset) {
  UniqueAlignedArray array;

  // Reset to non-empty.
  array.Reset(10);
  const MutableAlignedView view1 = array.view();
  TF_EXPECT_OK(OkIfAligned(view1.data()));
  EXPECT_EQ(view1.size(), 10);

  // Calling view() again should return the same byte array.
  const MutableAlignedView view2 = array.view();
  ExpectSameAddress(view2.data(), view1.data());
  EXPECT_EQ(view2.size(), view1.size());

  // Reset to a different size.
  array.Reset(33);
  const MutableAlignedView view3 = array.view();
  TF_EXPECT_OK(OkIfAligned(view3.data()));
  EXPECT_EQ(view3.size(), 33);
}

// Tests that UniqueAlignedArray::Reset() reallocates when growing.
TEST(UniqueAlignedArrayTest, Reserve) {
  UniqueAlignedArray array;

  // Reset to non-empty.
  array.Reserve(20);
  const MutableAlignedView view1 = array.view();
  TF_EXPECT_OK(OkIfAligned(view1.data()));
  EXPECT_EQ(view1.size(), 20);

  // Shrink to a smaller size; should not reallocate.
  array.Reserve(7);
  const MutableAlignedView view2 = array.view();
  ExpectSameAddress(view2.data(), view1.data());
  EXPECT_EQ(view2.size(), 7);

  // Grow but still remain within capacity; should not reallocate.
  array.Reserve(14);
  const MutableAlignedView view3 = array.view();
  ExpectSameAddress(view3.data(), view1.data());
  EXPECT_EQ(view3.size(), 14);
}

// Tests that UniqueAlignedArray::Resize() reallocates when growing and
// preserves existing contents.
TEST(UniqueAlignedArrayTest, Resize) {
  UniqueAlignedArray array;

  // Resize to non-empty.
  EXPECT_TRUE(array.Resize(10));
  const MutableAlignedView view1 = array.view();
  TF_EXPECT_OK(OkIfAligned(view1.data()));
  EXPECT_EQ(view1.size(), 10);

  // Write some stuff.
  for (int i = 0; i < 10; ++i) view1.data()[i] = '1';

  // Resize to a larger size.
  EXPECT_TRUE(array.Resize(33));
  const MutableAlignedView view2 = array.view();
  TF_EXPECT_OK(OkIfAligned(view2.data()));
  EXPECT_EQ(view2.size(), 33);

  // Check that content was preserved.
  for (int i = 0; i < 10; ++i) EXPECT_EQ(view2.data()[i], '1');

  // Append more stuff.
  for (int i = 10; i < 33; ++i) view2.data()[i] = '2';

  // Resize to a smaller size.
  EXPECT_FALSE(array.Resize(15));
  const MutableAlignedView view3 = array.view();
  TF_EXPECT_OK(OkIfAligned(view3.data()));
  ExpectSameAddress(view3.data(), view2.data());
  EXPECT_EQ(view3.size(), 15);

  // Check that content was preserved.
  for (int i = 0; i < 10; ++i) EXPECT_EQ(view3.data()[i], '1');
  for (int i = 10; i < 15; ++i) EXPECT_EQ(view3.data()[i], '2');

  // Overwrite with new stuff.
  for (int i = 0; i < 15; ++i) view3.data()[i] = '3';

  // Resize to a larger size, but still below capacity.
  EXPECT_FALSE(array.Resize(20));
  const MutableAlignedView view4 = array.view();
  TF_EXPECT_OK(OkIfAligned(view4.data()));
  ExpectSameAddress(view4.data(), view2.data());
  EXPECT_EQ(view4.size(), 20);

  // Check that content was preserved.
  for (int i = 0; i < 15; ++i) EXPECT_EQ(view4.data()[i], '3');
}

// Tests that (Mutable)AlignedView is empty by default.
TEST(AlignedViewTest, EmptyByDefault) {
  AlignedView view1;
  EXPECT_EQ(view1.size(), 0);
  EXPECT_TRUE(view1.empty());

  MutableAlignedView view2;
  EXPECT_EQ(view2.size(), 0);
  EXPECT_TRUE(view2.empty());
}

// Tests that (Mutable)AlignedView::Reset() works on aligned pointers.
TEST(AlignedViewTest, ResetValid) {
  char *pointer = nullptr;
  pointer += 3 * internal::kAlignmentBytes;

  AlignedView view1;
  TF_EXPECT_OK(view1.Reset(pointer, 100));
  ExpectSameAddress(view1.data(), pointer);
  EXPECT_EQ(view1.size(), 100);
  EXPECT_FALSE(view1.empty());

  MutableAlignedView view2;
  TF_EXPECT_OK(view2.Reset(pointer, 100));
  ExpectSameAddress(view2.data(), pointer);
  EXPECT_EQ(view2.size(), 100);
  EXPECT_FALSE(view2.empty());
}

// Tests that (Mutable)AlignedView::Reset() fails on misaligned pointers.
TEST(AlignedViewTest, ResetInvalid) {
  char *pointer = nullptr;
  ++pointer;  // not aligned

  AlignedView view1;
  EXPECT_THAT(view1.Reset(pointer, 10),
              test::IsErrorWithSubstr("Pointer fails alignment requirement"));

  MutableAlignedView view2;
  EXPECT_THAT(view2.Reset(pointer, 10),
              test::IsErrorWithSubstr("Pointer fails alignment requirement"));
}

// Tests that (Mutable)AlignedView::Reset() can empty the view.
TEST(AlignedViewTest, ResetEmpty) {
  char *pointer = nullptr;
  pointer += 11 * internal::kAlignmentBytes;

  // First point to a non-empty byte array.
  AlignedView view1;
  TF_EXPECT_OK(view1.Reset(pointer, 100));
  ExpectSameAddress(view1.data(), pointer);
  EXPECT_EQ(view1.size(), 100);
  EXPECT_FALSE(view1.empty());

  // Then reset to empty.
  TF_EXPECT_OK(view1.Reset(pointer, 0));
  EXPECT_EQ(view1.size(), 0);
  EXPECT_TRUE(view1.empty());

  // First point to a non-empty byte array.
  MutableAlignedView view2;
  TF_EXPECT_OK(view2.Reset(pointer, 100));
  ExpectSameAddress(view2.data(), pointer);
  EXPECT_EQ(view2.size(), 100);
  EXPECT_FALSE(view2.empty());

  // Then reset to empty.
  TF_EXPECT_OK(view2.Reset(pointer, 0));
  EXPECT_EQ(view2.size(), 0);
  EXPECT_TRUE(view2.empty());
}

// Tests that (Mutable)AlignedView supports copy-construction and assignment
// with shallow-copy semantics, and reinterprets from char* to const char*.
TEST(AlignedViewTest, CopyAndAssign) {
  char *pointer1 = nullptr;
  pointer1 += 3 * internal::kAlignmentBytes;
  const char *pointer2 = nullptr;
  pointer2 += 7 * internal::kAlignmentBytes;

  MutableAlignedView view1;
  TF_ASSERT_OK(view1.Reset(pointer1, 100));
  AlignedView view2;
  TF_ASSERT_OK(view2.Reset(pointer2, 200));

  MutableAlignedView view3(view1);
  ExpectSameAddress(view3.data(), pointer1);
  EXPECT_EQ(view3.size(), 100);
  EXPECT_FALSE(view3.empty());

  view3 = MutableAlignedView();
  EXPECT_EQ(view3.size(), 0);
  EXPECT_TRUE(view3.empty());

  view3 = view1;
  ExpectSameAddress(view3.data(), pointer1);
  EXPECT_EQ(view3.size(), 100);
  EXPECT_FALSE(view3.empty());

  AlignedView view4(view1);  // reinterprets type
  ExpectSameAddress(view4.data(), pointer1);
  EXPECT_EQ(view4.size(), 100);
  EXPECT_FALSE(view4.empty());

  view4 = AlignedView();
  EXPECT_EQ(view4.size(), 0);
  EXPECT_TRUE(view4.empty());

  view4 = view2;
  ExpectSameAddress(view4.data(), pointer2);
  EXPECT_EQ(view4.size(), 200);
  EXPECT_FALSE(view4.empty());

  view4 = view1;  // reinterprets type
  ExpectSameAddress(view4.data(), pointer1);
  EXPECT_EQ(view4.size(), 100);
  EXPECT_FALSE(view4.empty());

  view4 = MutableAlignedView();  // reinterprets type
  EXPECT_EQ(view4.size(), 0);
  EXPECT_TRUE(view4.empty());
}

// Tests that AlignedView can split itself into sub-views with specified sizes.
TEST(AlignedViewTest, SplitConst) {
  const std::vector<size_t> sizes = {1, internal::kAlignmentBytes,
                                     internal::kAlignmentBytes + 1, 1, 123};
  const size_t total_bytes = ComputeTotalBytesWithAlignmentPadding(sizes);

  AlignedView view;
  TF_ASSERT_OK(view.Reset(nullptr, total_bytes));

  std::vector<AlignedView> views(100);  // will be resized
  TF_ASSERT_OK(view.Split(sizes, &views));
  ASSERT_EQ(views.size(), 5);

  const char *base = view.data();
  ExpectSameAddress(views[0].data(), base);
  EXPECT_EQ(views[0].size(), 1);

  base += internal::kAlignmentBytes;
  ExpectSameAddress(views[1].data(), base);
  EXPECT_EQ(views[1].size(), internal::kAlignmentBytes);

  base += internal::kAlignmentBytes;
  ExpectSameAddress(views[2].data(), base);
  EXPECT_EQ(views[2].size(), internal::kAlignmentBytes + 1);

  base += 2 * internal::kAlignmentBytes;
  ExpectSameAddress(views[3].data(), base);
  EXPECT_EQ(views[3].size(), 1);

  base += internal::kAlignmentBytes;
  ExpectSameAddress(views[4].data(), base);
  EXPECT_EQ(views[4].size(), 123);
}

// Tests that MutableAlignedView can split itself into sub-views with specified
// sizes, and reinterprets from char* to const char*.
TEST(AlignedViewTest, SplitMutable) {
  const std::vector<size_t> sizes = {1, internal::kAlignmentBytes,
                                     internal::kAlignmentBytes + 1, 1, 123};
  const size_t total_bytes = ComputeTotalBytesWithAlignmentPadding(sizes);

  // Also add some padding to check that we can split part of the view.
  MutableAlignedView view;
  TF_ASSERT_OK(view.Reset(nullptr, total_bytes + 10));

  std::vector<AlignedView> const_views(99);  // will be resized
  std::vector<MutableAlignedView> mutable_views(2);  // will be resized
  TF_ASSERT_OK(view.Split(sizes, &const_views));
  TF_ASSERT_OK(view.Split(sizes, &mutable_views));
  ASSERT_EQ(const_views.size(), 5);
  ASSERT_EQ(mutable_views.size(), 5);

  const char *base = view.data();
  ExpectSameAddress(const_views[0].data(), base);
  ExpectSameAddress(mutable_views[0].data(), base);
  EXPECT_EQ(const_views[0].size(), 1);
  EXPECT_EQ(mutable_views[0].size(), 1);

  base += internal::kAlignmentBytes;
  ExpectSameAddress(const_views[1].data(), base);
  ExpectSameAddress(mutable_views[1].data(), base);
  EXPECT_EQ(const_views[1].size(), internal::kAlignmentBytes);
  EXPECT_EQ(mutable_views[1].size(), internal::kAlignmentBytes);

  base += internal::kAlignmentBytes;
  ExpectSameAddress(const_views[2].data(), base);
  ExpectSameAddress(mutable_views[2].data(), base);
  EXPECT_EQ(const_views[2].size(), internal::kAlignmentBytes + 1);
  EXPECT_EQ(mutable_views[2].size(), internal::kAlignmentBytes + 1);

  base += 2 * internal::kAlignmentBytes;
  ExpectSameAddress(const_views[3].data(), base);
  ExpectSameAddress(mutable_views[3].data(), base);
  EXPECT_EQ(const_views[3].size(), 1);
  EXPECT_EQ(mutable_views[3].size(), 1);

  base += internal::kAlignmentBytes;
  ExpectSameAddress(const_views[4].data(), base);
  ExpectSameAddress(mutable_views[4].data(), base);
  EXPECT_EQ(const_views[4].size(), 123);
  EXPECT_EQ(mutable_views[4].size(), 123);
}

TEST(AlignedViewTest, SplitTooSmall) {
  const std::vector<size_t> sizes = {1, internal::kAlignmentBytes,
                                     internal::kAlignmentBytes + 1, 1, 123};
  const size_t total_bytes = ComputeTotalBytesWithAlignmentPadding(sizes);

  // Make the view just a bit too small.
  MutableAlignedView view;
  TF_ASSERT_OK(view.Reset(nullptr, total_bytes - 1));

  std::vector<MutableAlignedView> views;
  EXPECT_THAT(view.Split(sizes, &views),
              test::IsErrorWithSubstr("View is too small to be split"));
}

// Tests that (Mutable)AlignedArea is empty by default.
TEST(AlignedAreaTest, EmptyByDefault) {
  AlignedArea area1;
  EXPECT_EQ(area1.num_views(), 0);
  EXPECT_EQ(area1.view_size(), 0);
  EXPECT_TRUE(area1.empty());

  MutableAlignedArea area2;
  EXPECT_EQ(area2.num_views(), 0);
  EXPECT_EQ(area2.view_size(), 0);
  EXPECT_TRUE(area2.empty());
}

// Tests that (Mutable)AlignedArea::Reset() can initialize to a single view.
TEST(AlignedAreaTest, ResetSingleton) {
  const char *pointer1 = nullptr;
  pointer1 += 3 * internal::kAlignmentBytes;
  char *pointer2 = nullptr;
  pointer2 += 7 * internal::kAlignmentBytes;

  AlignedView view1;
  TF_ASSERT_OK(view1.Reset(pointer1, internal::kAlignmentBytes));

  MutableAlignedView view2;
  TF_ASSERT_OK(view2.Reset(pointer2, internal::kAlignmentBytes + 1));

  AlignedArea area1;
  TF_ASSERT_OK(area1.Reset(view1, 1, 1));
  EXPECT_EQ(area1.num_views(), 1);
  EXPECT_EQ(area1.view_size(), 1);
  EXPECT_FALSE(area1.empty());
  ExpectSameAddress(area1.view(0).data(), pointer1);
  EXPECT_EQ(area1.view(0).size(), 1);

  TF_ASSERT_OK(area1.Reset(view2, 1, 2));
  EXPECT_EQ(area1.num_views(), 1);
  EXPECT_EQ(area1.view_size(), 2);
  EXPECT_FALSE(area1.empty());
  ExpectSameAddress(area1.view(0).data(), pointer2);
  EXPECT_EQ(area1.view(0).size(), 2);

  TF_ASSERT_OK(area1.Reset(view2, 1, 1));
  EXPECT_EQ(area1.num_views(), 1);
  EXPECT_EQ(area1.view_size(), 1);
  EXPECT_FALSE(area1.empty());
  ExpectSameAddress(area1.view(0).data(), pointer2);
  EXPECT_EQ(area1.view(0).size(), 1);

  MutableAlignedArea area2;
  TF_ASSERT_OK(area2.Reset(view2, 1, 2));
  EXPECT_EQ(area2.num_views(), 1);
  EXPECT_EQ(area2.view_size(), 2);
  EXPECT_FALSE(area2.empty());
  ExpectSameAddress(area2.view(0).data(), pointer2);
  EXPECT_EQ(area2.view(0).size(), 2);

  TF_ASSERT_OK(area2.Reset(view2, 1, 1));
  EXPECT_EQ(area2.num_views(), 1);
  EXPECT_EQ(area2.view_size(), 1);
  EXPECT_FALSE(area2.empty());
  ExpectSameAddress(area2.view(0).data(), pointer2);
  EXPECT_EQ(area2.view(0).size(), 1);
}

// Tests that (Mutable)AlignedArea::Reset() can initialize to a sequence of
// multiple views.
TEST(AlignedAreaTest, ResetMultiple) {
  const char *pointer1 = nullptr;
  pointer1 += 3 * internal::kAlignmentBytes;
  char *pointer2 = nullptr;
  pointer2 += 7 * internal::kAlignmentBytes;

  AlignedView view1;
  TF_ASSERT_OK(view1.Reset(pointer1, 11 * internal::kAlignmentBytes));

  MutableAlignedView view2;
  TF_ASSERT_OK(view2.Reset(pointer2, 2 * internal::kAlignmentBytes));

  AlignedArea area1;
  TF_ASSERT_OK(area1.Reset(view1, 11, 1));
  EXPECT_EQ(area1.num_views(), 11);
  EXPECT_EQ(area1.view_size(), 1);
  EXPECT_FALSE(area1.empty());
  for (int i = 0; i < area1.num_views(); ++i) {
    ExpectSameAddress(area1.view(i).data(),
                      pointer1 + internal::kAlignmentBytes * i);
    EXPECT_EQ(area1.view(i).size(), 1);
  }

  TF_ASSERT_OK(area1.Reset(view1, 10, internal::kAlignmentBytes));
  EXPECT_EQ(area1.num_views(), 10);
  EXPECT_EQ(area1.view_size(), internal::kAlignmentBytes);
  EXPECT_FALSE(area1.empty());
  for (int i = 0; i < area1.num_views(); ++i) {
    ExpectSameAddress(area1.view(i).data(),
                      pointer1 + internal::kAlignmentBytes * i);
    EXPECT_EQ(area1.view(i).size(), internal::kAlignmentBytes);
  }

  TF_ASSERT_OK(area1.Reset(view2, 2, 2));
  EXPECT_EQ(area1.num_views(), 2);
  EXPECT_EQ(area1.view_size(), 2);
  EXPECT_FALSE(area1.empty());
  for (int i = 0; i < area1.num_views(); ++i) {
    ExpectSameAddress(area1.view(i).data(),
                      pointer2 + internal::kAlignmentBytes * i);
    EXPECT_EQ(area1.view(i).size(), 2);
  }

  MutableAlignedArea area2;
  TF_ASSERT_OK(area2.Reset(view2, 2, internal::kAlignmentBytes));
  EXPECT_EQ(area2.num_views(), 2);
  EXPECT_EQ(area2.view_size(), internal::kAlignmentBytes);
  EXPECT_FALSE(area2.empty());
  for (int i = 0; i < area2.num_views(); ++i) {
    ExpectSameAddress(area2.view(i).data(),
                      pointer2 + internal::kAlignmentBytes * i);
    EXPECT_EQ(area2.view(i).size(), internal::kAlignmentBytes);
  }
}

// Tests that (Mutable)AlignedArea::Reset() fails when the view being split into
// sub-views is too small.
TEST(AlignedAreaTest, ResetInvalid) {
  AlignedView view1;
  TF_ASSERT_OK(view1.Reset(nullptr, 11 * internal::kAlignmentBytes));

  MutableAlignedView view2;
  TF_ASSERT_OK(view2.Reset(nullptr, 2 * internal::kAlignmentBytes));

  // View size larger than available view.
  AlignedArea area;
  EXPECT_THAT(area.Reset(view1, 1, 11 * internal::kAlignmentBytes + 1),
              test::IsErrorWithSubstr("View is too small for area"));
  TF_ASSERT_OK(area.Reset(view1, 11, 1));
  EXPECT_THAT(area.Reset(view2, 1, 2 * internal::kAlignmentBytes + 1),
              test::IsErrorWithSubstr("View is too small for area"));
  TF_ASSERT_OK(area.Reset(view2, 2, 1));

  // Total size larger than available view.
  EXPECT_THAT(area.Reset(view1, 12, 1),
              test::IsErrorWithSubstr("View is too small for area"));
  TF_ASSERT_OK(area.Reset(view1, 11, 1));
  EXPECT_THAT(area.Reset(view1, 4, 2 * internal::kAlignmentBytes + 1),
              test::IsErrorWithSubstr("View is too small for area"));
  TF_ASSERT_OK(area.Reset(view1, 11, 1));
  EXPECT_THAT(area.Reset(view1, 3, 3 * internal::kAlignmentBytes + 1),
              test::IsErrorWithSubstr("View is too small for area"));
  TF_ASSERT_OK(area.Reset(view1, 11, 1));
  EXPECT_THAT(area.Reset(view1, 2, 5 * internal::kAlignmentBytes + 1),
              test::IsErrorWithSubstr("View is too small for area"));
  TF_ASSERT_OK(area.Reset(view1, 11, 1));
  EXPECT_THAT(area.Reset(view2, 3, 1),
              test::IsErrorWithSubstr("View is too small for area"));
  TF_ASSERT_OK(area.Reset(view2, 2, 1));
  EXPECT_THAT(area.Reset(view2, 2, internal::kAlignmentBytes + 1),
              test::IsErrorWithSubstr("View is too small for area"));
  TF_ASSERT_OK(area.Reset(view2, 2, 1));
}

// Tests that (Mutable)AlignedView::Reset() can empty the area.
TEST(AlignedAreaTest, ResetEmpty) {
  AlignedView view1;
  TF_ASSERT_OK(view1.Reset(nullptr, 11 * internal::kAlignmentBytes));

  MutableAlignedView view2;
  TF_ASSERT_OK(view2.Reset(nullptr, 2 * internal::kAlignmentBytes));

  // First point to a non-empty byte array, then clear.
  AlignedArea area1;
  TF_ASSERT_OK(area1.Reset(view1, 11, 1));
  TF_ASSERT_OK(area1.Reset(view1, 0, 0));
  EXPECT_EQ(area1.num_views(), 0);
  EXPECT_EQ(area1.view_size(), 0);
  EXPECT_TRUE(area1.empty());

  TF_ASSERT_OK(area1.Reset(view2, 2, 1));
  TF_ASSERT_OK(area1.Reset(view2, 0, 100));
  EXPECT_EQ(area1.num_views(), 0);
  EXPECT_EQ(area1.view_size(), 100);
  EXPECT_TRUE(area1.empty());

  TF_ASSERT_OK(area1.Reset(view2, 2, 1));
  TF_ASSERT_OK(area1.Reset(MutableAlignedView(), 0, 1));
  EXPECT_EQ(area1.num_views(), 0);
  EXPECT_EQ(area1.view_size(), 1);
  EXPECT_TRUE(area1.empty());

  MutableAlignedArea area2;
  TF_ASSERT_OK(area2.Reset(view2, 2, 1));
  TF_ASSERT_OK(area2.Reset(view2, 0, 0));
  EXPECT_EQ(area2.num_views(), 0);
  EXPECT_EQ(area2.view_size(), 0);
  EXPECT_TRUE(area2.empty());

  TF_ASSERT_OK(area2.Reset(view2, 2, 1));
  TF_ASSERT_OK(area2.Reset(view2, 0, 100));
  EXPECT_EQ(area2.num_views(), 0);
  EXPECT_EQ(area2.view_size(), 100);
  EXPECT_TRUE(area2.empty());

  TF_ASSERT_OK(area2.Reset(view2, 2, 1));
  TF_ASSERT_OK(area2.Reset(MutableAlignedView(), 0, 1));
  EXPECT_EQ(area2.num_views(), 0);
  EXPECT_EQ(area2.view_size(), 1);
  EXPECT_TRUE(area2.empty());
}

// Tests that (Mutable)AlignedArea supports copy-construction and assignment
// with shallow-copy semantics, and reinterprets from char* to const char*.
TEST(AlignedAreaTest, CopyAndAssign) {
  char *pointer1 = nullptr;
  pointer1 += 3 * internal::kAlignmentBytes;
  const char *pointer2 = nullptr;
  pointer2 += 7 * internal::kAlignmentBytes;

  MutableAlignedView view1;
  TF_ASSERT_OK(view1.Reset(pointer1, ComputeAlignedAreaSize(1, 5)));
  AlignedView view2;
  TF_ASSERT_OK(view2.Reset(pointer2, ComputeAlignedAreaSize(2, 77)));

  MutableAlignedArea area1;
  TF_ASSERT_OK(area1.Reset(view1, 1, 5));
  AlignedArea area2;
  TF_ASSERT_OK(area2.Reset(view2, 2, 77));

  MutableAlignedArea area3(area1);
  EXPECT_EQ(area3.num_views(), 1);
  EXPECT_EQ(area3.view_size(), 5);
  EXPECT_FALSE(area3.empty());
  ExpectSameAddress(area3.view(0).data(), pointer1);
  EXPECT_EQ(area3.view(0).size(), 5);

  area3 = MutableAlignedArea();
  EXPECT_EQ(area3.num_views(), 0);
  EXPECT_EQ(area3.view_size(), 0);
  EXPECT_TRUE(area3.empty());

  area3 = area1;
  EXPECT_EQ(area3.num_views(), 1);
  EXPECT_EQ(area3.view_size(), 5);
  EXPECT_FALSE(area3.empty());
  ExpectSameAddress(area3.view(0).data(), pointer1);
  EXPECT_EQ(area3.view(0).size(), 5);

  AlignedArea area4(area1);  // reinterprets type
  EXPECT_EQ(area4.num_views(), 1);
  EXPECT_EQ(area4.view_size(), 5);
  EXPECT_FALSE(area4.empty());
  ExpectSameAddress(area4.view(0).data(), pointer1);
  EXPECT_EQ(area4.view(0).size(), 5);

  area4 = AlignedArea();
  EXPECT_EQ(area4.num_views(), 0);
  EXPECT_EQ(area4.view_size(), 0);
  EXPECT_TRUE(area4.empty());

  area4 = area2;
  EXPECT_EQ(area4.num_views(), 2);
  EXPECT_EQ(area4.view_size(), 77);
  EXPECT_FALSE(area4.empty());
  ExpectSameAddress(area4.view(0).data(), pointer2);
  EXPECT_EQ(area4.view(0).size(), 77);
  ExpectSameAddress(area4.view(1).data(), PadToAlignment(pointer2 + 77));
  EXPECT_EQ(area4.view(1).size(), 77);

  area4 = area1;  // reinterprets type
  EXPECT_EQ(area4.num_views(), 1);
  EXPECT_EQ(area4.view_size(), 5);
  EXPECT_FALSE(area4.empty());
  ExpectSameAddress(area4.view(0).data(), pointer1);
  EXPECT_EQ(area4.view(0).size(), 5);

  area4 = MutableAlignedArea();  // reinterprets type
  EXPECT_EQ(area4.num_views(), 0);
  EXPECT_EQ(area4.view_size(), 0);
  EXPECT_TRUE(area4.empty());
}

}  // namespace
}  // namespace runtime
}  // namespace dragnn
}  // namespace syntaxnet