README.md 20.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# TensorFlow-Slim image classification library

[TF-slim](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim)
is a new lightweight high-level API of TensorFlow (`tensorflow.contrib.slim`)
for defining, training and evaluating complex
models. This directory contains
code for training and evaluating several widely used Convolutional Neural
Network (CNN) image classification models using TF-slim.
It contains scripts that will allow
you to train models from scratch or fine-tune them from pre-trained network
weights. It also contains code for downloading standard image datasets,
converting them
to TensorFlow's native TFRecord format and reading them in using TF-Slim's
data reading and queueing utilities. You can easily train any model on any of
these datasets, as we demonstrate below. We've also included a
16
[jupyter notebook](https://github.com/tensorflow/models/blob/master/slim/slim_walkthrough.ipynb),
17
18
which provides working examples of how to use TF-Slim for image classification.

Alex Kurakin's avatar
Alex Kurakin committed
19
20
21
22
23
24
25
## Contacts

Maintainers of TF-slim:

* Nathan Silberman,
  github: [nathansilberman](https://github.com/nathansilberman)
* Sergio Guadarrama, github: [sguada](https://github.com/sguada)
26
27
28
29
30

## Table of contents

<a href="#Install">Installation and setup</a><br>
<a href='#Data'>Preparing the datasets</a><br>
31
<a href='#Pretrained'>Using pre-trained models</a><br>
32
33
34
<a href='#Training'>Training from scratch</a><br>
<a href='#Tuning'>Fine tuning to a new task</a><br>
<a href='#Eval'>Evaluating performance</a><br>
35
36
<a href='#Export'>Exporting Inference Graph</a><br>
<a href='#Troubleshooting'>Troubleshooting</a><br>
37
38
39
40
41
42
43
44
45

# Installation
<a id='Install'></a>

In this section, we describe the steps required to install the appropriate
prerequisite packages.

## Installing latest version of TF-slim

Neal Wu's avatar
Neal Wu committed
46
47
48
TF-Slim is available as `tf.contrib.slim` via TensorFlow 1.0. To test that your
installation is working, execute the following command; it should run without
raising any errors.
49

50
51
52
```
python -c "import tensorflow.contrib.slim as slim; eval = slim.evaluation.evaluate_once"
```
53

54
## Installing the TF-slim image models library
55

56
57
58
59
60
To use TF-Slim for image classification, you also have to install
the [TF-Slim image models library](https://github.com/tensorflow/models/tree/master/slim),
which is not part of the core TF library.
To do this, check out the
[tensorflow/models](https://github.com/tensorflow/models/) repository as follows:
61

62
63
64
65
```bash
cd $HOME/workspace
git clone https://github.com/tensorflow/models/
```
66

67
68
69
70
This will put the TF-Slim image models library in `$HOME/workspace/models/slim`.
(It will also create a directory called
[models/inception](https://github.com/tensorflow/models/tree/master/inception),
which contains an older version of slim; you can safely ignore this.)
71

72
73
To verify that this has worked, execute the following commands; it should run
without raising any errors.
74
75

```
896066322's avatar
896066322 committed
76
cd $HOME/workspace/models/slim
77
python -c "from nets import cifarnet; mynet = cifarnet.cifarnet"
78
79
80
```


81
# Preparing the datasets
82
<a id='Data'></a>
83

84
85
As part of this library, we've included scripts to download several popular
image datasets (listed below) and convert them to slim format.
86

87
88
89
90
91
92
Dataset | Training Set Size | Testing Set Size | Number of Classes | Comments
:------:|:---------------:|:---------------------:|:-----------:|:-----------:
Flowers|2500 | 2500 | 5 | Various sizes (source: Flickr)
[Cifar10](https://www.cs.toronto.edu/~kriz/cifar.html) | 60k| 10k | 10 |32x32 color
[MNIST](http://yann.lecun.com/exdb/mnist/)| 60k | 10k | 10 | 28x28 gray
[ImageNet](http://www.image-net.org/challenges/LSVRC/2012/)|1.2M| 50k | 1000 | Various sizes
93

94
## Downloading and converting to TFRecord format
95

96
97
98
99
100
101
For each dataset, we'll need to download the raw data and convert it to
TensorFlow's native
[TFRecord](https://www.tensorflow.org/versions/r0.10/api_docs/python/python_io.html#tfrecords-format-details)
format. Each TFRecord contains a
[TF-Example](https://github.com/tensorflow/tensorflow/blob/r0.10/tensorflow/core/example/example.proto)
protocol buffer. Below we demonstrate how to do this for the Flowers dataset.
102
103

```shell
104
105
106
107
$ DATA_DIR=/tmp/data/flowers
$ python download_and_convert_data.py \
    --dataset_name=flowers \
    --dataset_dir="${DATA_DIR}"
108
109
110
111
112
113
114
```

When the script finishes you will find several TFRecord files created:

```shell
$ ls ${DATA_DIR}
flowers_train-00000-of-00005.tfrecord
115
...
116
117
flowers_train-00004-of-00005.tfrecord
flowers_validation-00000-of-00005.tfrecord
118
...
119
120
121
122
123
124
125
126
flowers_validation-00004-of-00005.tfrecord
labels.txt
```

These represent the training and validation data, sharded over 5 files each.
You will also find the `$DATA_DIR/labels.txt` file which contains the mapping
from integer labels to class names.

127
128
129
130
You can use the same script to create the mnist and cifar10 datasets.
However, for ImageNet, you have to follow the instructions
[here](https://github.com/tensorflow/models/blob/master/inception/README.md#getting-started).
Note that you first have to sign up for an account at image-net.org.
Neal Wu's avatar
Neal Wu committed
131
Also, the download can take several hours, and could use up to 500GB.
132
133


134
## Creating a TF-Slim Dataset Descriptor.
135

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
Once the TFRecord files have been created, you can easily define a Slim
[Dataset](https://github.com/tensorflow/tensorflow/blob/r0.10/tensorflow/contrib/slim/python/slim/data/dataset.py),
which stores pointers to the data file, as well as various other pieces of
metadata, such as the class labels, the train/test split, and how to parse the
TFExample protos. We have included the TF-Slim Dataset descriptors
for
[Cifar10](https://github.com/tensorflow/models/blob/master/slim/datasets/cifar10.py),
[ImageNet](https://github.com/tensorflow/models/blob/master/slim/datasets/imagenet.py),
[Flowers](https://github.com/tensorflow/models/blob/master/slim/datasets/flowers.py),
and
[MNIST](https://github.com/tensorflow/models/blob/master/slim/datasets/mnist.py).
An example of how to load data using a TF-Slim dataset descriptor using a
TF-Slim
[DatasetDataProvider](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/slim/python/slim/data/dataset_data_provider.py)
is found below:
151

152
153
154
```python
import tensorflow as tf
from datasets import flowers
155

156
slim = tf.contrib.slim
157

158
159
# Selects the 'validation' dataset.
dataset = flowers.get_split('validation', DATA_DIR)
160

161
162
163
164
165
# Creates a TF-Slim DataProvider which reads the dataset in the background
# during both training and testing.
provider = slim.dataset_data_provider.DatasetDataProvider(dataset)
[image, label] = provider.get(['image', 'label'])
```
166
167


168
169
# Pre-trained Models
<a id='Pretrained'></a>
170

171
172
173
174
175
176
177
178
Neural nets work best when they have many parameters, making them powerful
function approximators.
However, this  means they must be trained on very large datasets. Because
training models from scratch can be a very computationally intensive process
requiring days or even weeks, we provide various pre-trained models,
as listed below. These CNNs have been trained on the
[ILSVRC-2012-CLS](http://www.image-net.org/challenges/LSVRC/2012/)
image classification dataset.
179

180
181
182
In the table below, we list each model, the corresponding
TensorFlow model file, the link to the model checkpoint, and the top 1 and top 5
accuracy (on the imagenet test set).
183
Note that the VGG and ResNet V1 parameters have been converted from their original
184
185
186
caffe formats
([here](https://github.com/BVLC/caffe/wiki/Model-Zoo#models-used-by-the-vgg-team-in-ilsvrc-2014)
and
187
[here](https://github.com/KaimingHe/deep-residual-networks)),
188
whereas the Inception and ResNet V2 parameters have been trained internally at
189
190
191
192
193
194
Google. Also be aware that these accuracies were computed by evaluating using a
single image crop. Some academic papers report higher accuracy by using multiple
crops at multiple scales.

Model | TF-Slim File | Checkpoint | Top-1 Accuracy| Top-5 Accuracy |
:----:|:------------:|:----------:|:-------:|:--------:|
Alex Kurakin's avatar
Alex Kurakin committed
195
196
197
198
[Inception V1](http://arxiv.org/abs/1409.4842v1)|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/inception_v1.py)|[inception_v1_2016_08_28.tar.gz](http://download.tensorflow.org/models/inception_v1_2016_08_28.tar.gz)|69.8|89.6|
[Inception V2](http://arxiv.org/abs/1502.03167)|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/inception_v2.py)|[inception_v2_2016_08_28.tar.gz](http://download.tensorflow.org/models/inception_v2_2016_08_28.tar.gz)|73.9|91.8|
[Inception V3](http://arxiv.org/abs/1512.00567)|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/inception_v3.py)|[inception_v3_2016_08_28.tar.gz](http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz)|78.0|93.9|
[Inception V4](http://arxiv.org/abs/1602.07261)|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/inception_v4.py)|[inception_v4_2016_09_09.tar.gz](http://download.tensorflow.org/models/inception_v4_2016_09_09.tar.gz)|80.2|95.2|
andrewghoward's avatar
andrewghoward committed
199
[Inception-ResNet-v2](http://arxiv.org/abs/1602.07261)|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/inception_resnet_v2.py)|[inception_resnet_v2_2016_08_30.tar.gz](http://download.tensorflow.org/models/inception_resnet_v2_2016_08_30.tar.gz)|80.4|95.3|
200
201
202
203
204
205
[ResNet V1 50](https://arxiv.org/abs/1512.03385)|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/resnet_v1.py)|[resnet_v1_50_2016_08_28.tar.gz](http://download.tensorflow.org/models/resnet_v1_50_2016_08_28.tar.gz)|75.2|92.2|
[ResNet V1 101](https://arxiv.org/abs/1512.03385)|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/resnet_v1.py)|[resnet_v1_101_2016_08_28.tar.gz](http://download.tensorflow.org/models/resnet_v1_101_2016_08_28.tar.gz)|76.4|92.9|
[ResNet V1 152](https://arxiv.org/abs/1512.03385)|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/resnet_v1.py)|[resnet_v1_152_2016_08_28.tar.gz](http://download.tensorflow.org/models/resnet_v1_152_2016_08_28.tar.gz)|76.8|93.2|
[ResNet V2 50](https://arxiv.org/abs/1603.05027)^|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/resnet_v2.py)|[resnet_v2_50_2017_04_14.tar.gz](http://download.tensorflow.org/models/resnet_v2_50_2017_04_14.tar.gz)|75.6|92.8|
[ResNet V2 101](https://arxiv.org/abs/1603.05027)^|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/resnet_v2.py)|[resnet_v2_101_2017_04_14.tar.gz](http://download.tensorflow.org/models/resnet_v2_101_2017_04_14.tar.gz)|77.0|93.7|
[ResNet V2 152](https://arxiv.org/abs/1603.05027)^|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/resnet_v2.py)|[resnet_v2_152_2017_04_14.tar.gz](http://download.tensorflow.org/models/resnet_v2_152_2017_04_14.tar.gz)|77.8|94.1|
andrewghoward's avatar
andrewghoward committed
206
207
208
209
210
211
[ResNet V2 200](https://arxiv.org/abs/1603.05027)|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/resnet_v2.py)|[TBA]()|79.9\*|95.2\*|
[VGG 16](http://arxiv.org/abs/1409.1556.pdf)|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/vgg.py)|[vgg_16_2016_08_28.tar.gz](http://download.tensorflow.org/models/vgg_16_2016_08_28.tar.gz)|71.5|89.8|
[VGG 19](http://arxiv.org/abs/1409.1556.pdf)|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/vgg.py)|[vgg_19_2016_08_28.tar.gz](http://download.tensorflow.org/models/vgg_19_2016_08_28.tar.gz)|71.1|89.8|
[MobileNet_v1_1.0_224](https://arxiv.org/pdf/1704.04861.pdf)|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/mobilenet_v1.py)|[mobilenet_v1_1.0_224_2017_06_14.tar.gz](http://download.tensorflow.org/models/mobilenet_v1_1.0_224_2017_06_14.tar.gz)|70.7|89.5|
[MobileNet_v1_0.50_160](https://arxiv.org/pdf/1704.04861.pdf)|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/mobilenet_v1.py)|[mobilenet_v1_0.50_160_2017_06_14.tar.gz](http://download.tensorflow.org/models/mobilenet_v1_0.50_160_2017_06_14.tar.gz)|59.9|82.5|
[MobileNet_v1_0.25_128](https://arxiv.org/pdf/1704.04861.pdf)|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/mobilenet_v1.py)|[mobilenet_v1_0.25_128_2017_06_14.tar.gz](http://download.tensorflow.org/models/mobilenet_v1_0.25_128_2017_06_14.tar.gz)|41.3|66.2|
212

213
214
215
^ ResNet V2 models use Inception pre-processing and input image size of 299 (use
`--preprocessing_name inception --eval_image_size 299` when using
`eval_image_classifier.py`). Performance numbers for ResNet V2 models are
andrewghoward's avatar
andrewghoward committed
216
217
218
reported on ImageNet valdiation set.

All 16 MobileNet Models reported in the [MobileNet Paper](https://arxiv.org/abs/1704.04861) can be found [here](https://github.com/tensorflow/models/tree/master/slim/nets/mobilenet_v1.md).
219

andrewghoward's avatar
andrewghoward committed
220
(\*): Results quoted from the [paper](https://arxiv.org/abs/1603.05027).
221

222
Here is an example of how to download the Inception V3 checkpoint:
223

224
225
226
227
228
229
230
231
```shell
$ CHECKPOINT_DIR=/tmp/checkpoints
$ mkdir ${CHECKPOINT_DIR}
$ wget http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz
$ tar -xvf inception_v3_2016_08_28.tar.gz
$ mv inception_v3.ckpt ${CHECKPOINT_DIR}
$ rm inception_v3_2016_08_28.tar.gz
```
232
233
234



235
236
# Training a model from scratch.
<a id='Training'></a>
237

238
239
240
We provide an easy way to train a model from scratch using any TF-Slim dataset.
The following example demonstrates how to train Inception V3 using the default
parameters on the ImageNet dataset.
241

242
243
244
245
```shell
DATASET_DIR=/tmp/imagenet
TRAIN_DIR=/tmp/train_logs
python train_image_classifier.py \
246
247
248
249
250
251
252
    --train_dir=${TRAIN_DIR} \
    --dataset_name=imagenet \
    --dataset_split_name=train \
    --dataset_dir=${DATASET_DIR} \
    --model_name=inception_v3
```

253
254
255
256
257
258
259
This process may take several days, depending on your hardware setup.
For convenience, we provide a way to train a model on multiple GPUs,
and/or multiple CPUs, either synchrononously or asynchronously.
See [model_deploy](https://github.com/tensorflow/models/blob/master/slim/deployment/model_deploy.py)
for details.


260
# Fine-tuning a model from an existing checkpoint
261
<a id='Tuning'></a>
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

Rather than training from scratch, we'll often want to start from a pre-trained
model and fine-tune it.
To indicate a checkpoint from which to fine-tune, we'll call training with
the `--checkpoint_path` flag and assign it an absolute path to a checkpoint
file.

When fine-tuning a model, we need to be careful about restoring checkpoint
weights. In particular, when we fine-tune a model on a new task with a different
number of output labels, we wont be able restore the final logits (classifier)
layer. For this, we'll use the `--checkpoint_exclude_scopes` flag. This flag
hinders certain variables from being loaded. When fine-tuning on a
classification task using a different number of classes than the trained model,
the new model will have a final 'logits' layer whose dimensions differ from the
pre-trained model. For example, if fine-tuning an ImageNet-trained model on
277
278
Flowers, the pre-trained logits layer will have dimensions `[2048 x 1001]` but
our new logits layer will have dimensions `[2048 x 5]`. Consequently, this
279
280
281
282
283
284
285
286
flag indicates to TF-Slim to avoid loading these weights from the checkpoint.

Keep in mind that warm-starting from a checkpoint affects the model's weights
only during the initialization of the model. Once a model has started training,
a new checkpoint will be created in `${TRAIN_DIR}`. If the fine-tuning
training is stopped and restarted, this new checkpoint will be the one from
which weights are restored and not the `${checkpoint_path}$`. Consequently,
the flags `--checkpoint_path` and `--checkpoint_exclude_scopes` are only used
287
288
289
during the `0-`th global step (model initialization). Typically for fine-tuning
one only want train a sub-set of layers, so the flag `--trainable_scopes` allows
to specify which subsets of layers should trained, the rest would remain frozen.
290

291
292
293
294
295
Below we give an example of
[fine-tuning inception-v3 on flowers](https://github.com/tensorflow/models/blob/master/slim/scripts/finetune_inception_v3_on_flowers.sh),
inception_v3  was trained on ImageNet with 1000 class labels, but the flowers
dataset only have 5 classes. Since the dataset is quite small we will only train
the new layers.
296
297


298
299
300
301
302
```shell
$ DATASET_DIR=/tmp/flowers
$ TRAIN_DIR=/tmp/flowers-models/inception_v3
$ CHECKPOINT_PATH=/tmp/my_checkpoints/inception_v3.ckpt
$ python train_image_classifier.py \
303
304
    --train_dir=${TRAIN_DIR} \
    --dataset_dir=${DATASET_DIR} \
305
    --dataset_name=flowers \
306
307
308
    --dataset_split_name=train \
    --model_name=inception_v3 \
    --checkpoint_path=${CHECKPOINT_PATH} \
309
310
    --checkpoint_exclude_scopes=InceptionV3/Logits,InceptionV3/AuxLogits \
    --trainable_scopes=InceptionV3/Logits,InceptionV3/AuxLogits
311
312
313
314
```



315
316
# Evaluating performance of a model
<a id='Eval'></a>
317

318
319
To evaluate the performance of a model (whether pretrained or your own),
you can use the eval_image_classifier.py script, as shown below.
320

321
322
Below we give an example of downloading the pretrained inception model and
evaluating it on the imagenet dataset.
323

324
325
326
```shell
CHECKPOINT_FILE = ${CHECKPOINT_DIR}/inception_v3.ckpt  # Example
$ python eval_image_classifier.py \
327
    --alsologtostderr \
328
    --checkpoint_path=${CHECKPOINT_FILE} \
329
330
331
    --dataset_dir=${DATASET_DIR} \
    --dataset_name=imagenet \
    --dataset_split_name=validation \
332
    --model_name=inception_v3
333
334
```

335

336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
# Exporting the Inference Graph
<a id='Export'></a>

Saves out a GraphDef containing the architecture of the model.

To use it with a model name defined by slim, run:

```shell
$ python export_inference_graph.py \
  --alsologtostderr \
  --model_name=inception_v3 \
  --output_file=/tmp/inception_v3_inf_graph.pb

$ python export_inference_graph.py \
  --alsologtostderr \
  --model_name=mobilenet_v1 \
  --image_size=224 \
  --output_file=/tmp/mobilenet_v1_224.pb
```

## Freezing the exported Graph
If you then want to use the resulting model with your own or pretrained
checkpoints as part of a mobile model, you can run freeze_graph to get a graph
def with the variables inlined as constants using:

```shell
bazel build tensorflow/python/tools:freeze_graph

bazel-bin/tensorflow/python/tools/freeze_graph \
  --input_graph=/tmp/inception_v3_inf_graph.pb \
  --input_checkpoint=/tmp/checkpoints/inception_v3.ckpt \
  --input_binary=true --output_graph=/tmp/frozen_inception_v3.pb \
  --output_node_names=InceptionV3/Predictions/Reshape_1
```

The output node names will vary depending on the model, but you can inspect and
estimate them using the summarize_graph tool:

```shell
bazel build tensorflow/tools/graph_transforms:summarize_graph

bazel-bin/tensorflow/tools/graph_transforms/summarize_graph \
  --in_graph=/tmp/inception_v3_inf_graph.pb
```

## Run label image in C++

To run the resulting graph in C++, you can look at the label_image sample code:

```shell
bazel build tensorflow/examples/label_image:label_image

bazel-bin/tensorflow/examples/label_image/label_image \
  --image=${HOME}/Pictures/flowers.jpg \
  --input_layer=input \
  --output_layer=InceptionV3/Predictions/Reshape_1 \
  --graph=/tmp/frozen_inception_v3.pb \
  --labels=/tmp/imagenet_slim_labels.txt \
  --input_mean=0 \
  --input_std=255 \
  --logtostderr
```

399

400
# Troubleshooting
401
<a id='Troubleshooting'></a>
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419

#### The model runs out of CPU memory.

See
[Model Runs out of CPU memory](https://github.com/tensorflow/models/tree/master/inception#the-model-runs-out-of-cpu-memory).

#### The model runs out of GPU memory.

See
[Adjusting Memory Demands](https://github.com/tensorflow/models/tree/master/inception#adjusting-memory-demands).

#### The model training results in NaN's.

See
[Model Resulting in NaNs](https://github.com/tensorflow/models/tree/master/inception#the-model-training-results-in-nans).

#### The ResNet and VGG Models have 1000 classes but the ImageNet dataset has 1001

420
The ImageNet dataset provided has an empty background class which can be used
421
422
423
to fine-tune the model to other tasks. If you try training or fine-tuning the
VGG or ResNet models using the ImageNet dataset, you might encounter the
following error:
424
425
426
427

```bash
InvalidArgumentError: Assign requires shapes of both tensors to match. lhs shape= [1001] rhs shape= [1000]
```
428
This is due to the fact that the VGG and ResNet V1 final layers have only 1000
429
430
outputs rather than 1001.

431
To fix this issue, you can set the `--labels_offset=1` flag. This results in
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
the ImageNet labels being shifted down by one:


#### I wish to train a model with a different image size.

The preprocessing functions all take `height` and `width` as parameters. You
can change the default values using the following snippet:

```python
image_preprocessing_fn = preprocessing_factory.get_preprocessing(
    preprocessing_name,
    height=MY_NEW_HEIGHT,
    width=MY_NEW_WIDTH,
    is_training=True)
```

#### What hardware specification are these hyper-parameters targeted for?

See
[Hardware Specifications](https://github.com/tensorflow/models/tree/master/inception#what-hardware-specification-are-these-hyper-parameters-targeted-for).