masked_lm.py 4.67 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Hongkun Yu's avatar
Hongkun Yu committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Frederick Liu's avatar
Frederick Liu committed
14

Hongkun Yu's avatar
Hongkun Yu committed
15
16
"""Masked language model network."""
# pylint: disable=g-classes-have-attributes
17
import tensorflow as tf
Hongkun Yu's avatar
Hongkun Yu committed
18
19


20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
@tf.keras.utils.register_keras_serializable(package='Text')
class MaskedLM(tf.keras.layers.Layer):
  """Masked language model network head for BERT modeling.

  This layer implements a masked language model based on the provided
  transformer based encoder. It assumes that the encoder network being passed
  has a "get_embedding_table()" method.

  Example:
  ```python
  encoder=keras_nlp.BertEncoder(...)
  lm_layer=MaskedLM(embedding_table=encoder.get_embedding_table())
  ```

  Args:
    embedding_table: The embedding table from encoder network.
    activation: The activation, if any, for the dense layer.
    initializer: The initializer for the dense layer. Defaults to a Glorot
      uniform initializer.
    output: The output style for this layer. Can be either 'logits' or
      'predictions'.
  """

  def __init__(self,
               embedding_table,
               activation=None,
               initializer='glorot_uniform',
               output='logits',
               name=None,
               **kwargs):
    super(MaskedLM, self).__init__(name=name, **kwargs)
    self.embedding_table = embedding_table
    self.activation = activation
    self.initializer = tf.keras.initializers.get(initializer)

    if output not in ('predictions', 'logits'):
      raise ValueError(
          ('Unknown `output` value "%s". `output` can be either "logits" or '
           '"predictions"') % output)
    self._output_type = output

  def build(self, input_shape):
    self._vocab_size, hidden_size = self.embedding_table.shape
    self.dense = tf.keras.layers.Dense(
        hidden_size,
        activation=self.activation,
        kernel_initializer=self.initializer,
        name='transform/dense')
    self.layer_norm = tf.keras.layers.LayerNormalization(
        axis=-1, epsilon=1e-12, name='transform/LayerNorm')
    self.bias = self.add_weight(
        'output_bias/bias',
        shape=(self._vocab_size,),
        initializer='zeros',
        trainable=True)

    super(MaskedLM, self).build(input_shape)

  def call(self, sequence_data, masked_positions):
    masked_lm_input = self._gather_indexes(sequence_data, masked_positions)
    lm_data = self.dense(masked_lm_input)
    lm_data = self.layer_norm(lm_data)
    lm_data = tf.matmul(lm_data, self.embedding_table, transpose_b=True)
    logits = tf.nn.bias_add(lm_data, self.bias)
    masked_positions_length = masked_positions.shape.as_list()[1] or tf.shape(
        masked_positions)[1]
    logits = tf.reshape(logits,
                        [-1, masked_positions_length, self._vocab_size])
    if self._output_type == 'logits':
      return logits
    return tf.nn.log_softmax(logits)

  def get_config(self):
    raise NotImplementedError('MaskedLM cannot be directly serialized because '
                              'it has variable sharing logic.')

  def _gather_indexes(self, sequence_tensor, positions):
    """Gathers the vectors at the specific positions, for performance.

    Args:
        sequence_tensor: Sequence output of shape
          (`batch_size`, `seq_length`, num_hidden) where num_hidden is number of
          hidden units.
        positions: Positions ids of tokens in sequence to mask for pretraining
          of with dimension (batch_size, num_predictions) where
          `num_predictions` is maximum number of tokens to mask out and predict
          per each sequence.

    Returns:
        Masked out sequence tensor of shape (batch_size * num_predictions,
        num_hidden).
    """
    sequence_shape = tf.shape(sequence_tensor)
    batch_size, seq_length = sequence_shape[0], sequence_shape[1]
    width = sequence_tensor.shape.as_list()[2] or sequence_shape[2]

    flat_offsets = tf.reshape(
        tf.range(0, batch_size, dtype=tf.int32) * seq_length, [-1, 1])
    flat_positions = tf.reshape(positions + flat_offsets, [-1])
    flat_sequence_tensor = tf.reshape(sequence_tensor,
                                      [batch_size * seq_length, width])
    output_tensor = tf.gather(flat_sequence_tensor, flat_positions)

    return output_tensor