"vscode:/vscode.git/clone" did not exist on "31f1145d0edec688ea48d31ac76d51e60eb4bda4"
Autoencoder.py 3.17 KB
Newer Older
Jiří Vahala's avatar
Jiří Vahala committed
1
2
3
4
import tensorflow as tf

class Autoencoder(object):

5
6
    def __init__(self, n_layers, transfer_function=tf.nn.softplus, optimizer=tf.train.AdamOptimizer()):
        self.n_layers = n_layers
Jiří Vahala's avatar
Jiří Vahala committed
7
8
9
10
11
12
        self.transfer = transfer_function

        network_weights = self._initialize_weights()
        self.weights = network_weights

        # model
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
        self.x = tf.placeholder(tf.float32, [None, self.n_layers[0]])
        self.hidden_encode = []
        h = self.x
        for layer in range(len(self.n_layers)-1):
            h = self.transfer(
                tf.add(tf.matmul(h, self.weights['encode'][layer]['w']),
                       self.weights['encode'][layer]['b']))
            self.hidden_encode.append(h)

        self.hidden_recon = []
        for layer in range(len(self.n_layers)-1):
            h = self.transfer(
                tf.add(tf.matmul(h, self.weights['recon'][layer]['w']),
                       self.weights['recon'][layer]['b']))
            self.hidden_recon.append(h)
        self.reconstruction = self.hidden_recon[-1]
Jiří Vahala's avatar
Jiří Vahala committed
29
30

        # cost
31
        self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(self.reconstruction, self.x), 2.0))
Jiří Vahala's avatar
Jiří Vahala committed
32
33
        self.optimizer = optimizer.minimize(self.cost)

34
        init = tf.global_variables_initializer()
Jiří Vahala's avatar
Jiří Vahala committed
35
36
37
38
39
40
        self.sess = tf.Session()
        self.sess.run(init)


    def _initialize_weights(self):
        all_weights = dict()
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
        # Encoding network weights
        encoder_weights = []
        for layer in range(len(self.n_layers)-1):
            w = tf.Variable(
                autoencoder.Utils.xavier_init(self.n_layers[layer],
                                              self.n_layers[layer + 1]))
            b = tf.Variable(tf.zeros([self.n_layers[layer+1]], dtype=tf.float32))
            encoder_weights.append({'w': w, 'b': b})
        # Recon network weights
        recon_weights = []
        for layer in range(len(self.n_layers)-1, 0, -1):
            w = tf.Variable(
                autoencoder.Utils.xavier_init(self.n_layers[layer],
                                              self.n_layers[layer - 1]))
            b = tf.Variable(tf.zeros([self.n_layers[layer-1]], dtype=tf.float32))
            recon_weights.append({'w': w, 'b': b})
        all_weights['encode'] = encoder_weights
        all_weights['recon'] = recon_weights
Jiří Vahala's avatar
Jiří Vahala committed
59
60
61
62
63
64
65
        return all_weights

    def partial_fit(self, X):
        cost, opt = self.sess.run((self.cost, self.optimizer), feed_dict={self.x: X})
        return cost

    def calc_total_cost(self, X):
66
        return self.sess.run(self.cost, feed_dict={self.x: X})
Jiří Vahala's avatar
Jiří Vahala committed
67
68

    def transform(self, X):
69
        return self.sess.run(self.hidden_encode[-1], feed_dict={self.x: X})
Jiří Vahala's avatar
Jiří Vahala committed
70

71
    def generate(self, hidden=None):
Jiří Vahala's avatar
Jiří Vahala committed
72
        if hidden is None:
73
74
            hidden = np.random.normal(size=self.weights['encode'][-1]['b'])
        return self.sess.run(self.reconstruction, feed_dict={self.hidden_encode[-1]: hidden})
Jiří Vahala's avatar
Jiří Vahala committed
75
76
77
78
79

    def reconstruct(self, X):
        return self.sess.run(self.reconstruction, feed_dict={self.x: X})

    def getWeights(self):
80
81
        raise NotImplementedError
        return self.sess.run(self.weights)
Jiří Vahala's avatar
Jiří Vahala committed
82
83

    def getBiases(self):
84
85
        raise NotImplementedError
        return self.sess.run(self.weights)
Jiří Vahala's avatar
Jiří Vahala committed
86