training_utils.py 11.7 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""XLNet classification finetuning runner in tf2.0."""

from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function

import os
import re

from absl import logging

# pytype: disable=attribute-error
# pylint: disable=g-bare-generic,unused-import
import tensorflow as tf
# Initialize TPU System.
from official.nlp.xlnet import data_utils
from official.nlp import xlnet_modeling as modeling
from typing import Any, Callable, Dict, Text, Optional

_MIN_SUMMARY_STEPS = 10


def _save_checkpoint(checkpoint, model_dir, checkpoint_prefix):
  """Saves model to with provided checkpoint prefix."""

  checkpoint_path = os.path.join(model_dir, checkpoint_prefix)
  saved_path = checkpoint.save(checkpoint_path)
  logging.info("Saving model as TF checkpoint: %s", saved_path)
  return


def _float_metric_value(metric):
  """Gets the value of a float-value keras metric."""
  return metric.result().numpy().astype(float)


def _steps_to_run(current_step, steps_per_epoch, steps_per_loop):
  """Calculates steps to run on device."""
  if steps_per_loop <= 0:
    raise ValueError("steps_per_loop should be positive integer.")
  if steps_per_loop == 1:
    return steps_per_loop
  remainder_in_epoch = current_step % steps_per_epoch
  if remainder_in_epoch != 0:
    return min(steps_per_epoch - remainder_in_epoch, steps_per_loop)
  else:
    return steps_per_loop


def train(
    strategy: tf.distribute.Strategy,
    model_fn: Callable,
    input_meta_data: Dict,
    train_input_fn: Callable,
    total_training_steps: int,
    steps_per_epoch: int,
    steps_per_loop: int,
    optimizer: tf.keras.optimizers.Optimizer,
    learning_rate_fn: tf.keras.optimizers.schedules.LearningRateSchedule,
    eval_fn: Optional[Callable[[tf.keras.Model, int, tf.summary.SummaryWriter],
                               Any]] = None,
    metric_fn: Optional[Callable[[], tf.keras.metrics.Metric]] = None,
    test_input_fn: Optional[Callable] = None,
    init_checkpoint: Optional[Text] = None,
    model_dir: Optional[Text] = None,
Hongkun Yu's avatar
Hongkun Yu committed
81
82
    save_steps: Optional[int] = None,
    run_eagerly: Optional[bool] = False):
Hongkun Yu's avatar
Hongkun Yu committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
  """Runs customized training.

  Args:
      strategy: Distribution strategy on which to run low level training loop.
      model_fn: The function returns a keras.Model.
      input_meta_data: A dictionary of params: `mem_len`, `lr_layer_decay_rate`,
        `n_layer`, `batch_size_per_core` and `d_model`.
      train_input_fn: Function returns a tf.data.Dataset used for training.
      total_training_steps: Number of steps to train in total.
      steps_per_epoch: Number of steps to run per epoch. At the end of each
        epoch, model checkpoint will be saved and evaluation will be conducted
        if evaluation dataset is provided.
      steps_per_loop: Number of steps per graph-mode loop. In order to reduce
        communication in eager context, training logs are printed every
        steps_per_loop.
      optimizer: The optimizer for model.
      learning_rate_fn: the learning rate schedule.
      eval_fn: A callback of evaluation function, that takes a keras.Model,
        current step and evaluation summary writer.
      metric_fn: A metrics function returns a Keras Metric object to record
        evaluation result using evaluation dataset or with training dataset
        after every epoch.
      test_input_fn:  Function returns a evaluation dataset. If none, evaluation
        is skipped.
      init_checkpoint: Optional checkpoint to load to `sub_model` returned by
        `model_fn`.
      model_dir: The directory of model (checkpoints, summaries).
      save_steps: The frequency to save checkpoints. Every save_steps, we save a
        model checkpoint.
Hongkun Yu's avatar
Hongkun Yu committed
112
      run_eagerly: Whether to run training eagerly.
Hongkun Yu's avatar
Hongkun Yu committed
113
114
115
116
117
118
119

  Returns:
      Last training step logits if training happens, otherwise returns None.
  Raises:
    TypeError: if model directory is not specified.
  """
  required_arguments = [
Hongkun Yu's avatar
Hongkun Yu committed
120
121
      train_input_fn, total_training_steps, steps_per_epoch, steps_per_loop,
      optimizer, learning_rate_fn
Hongkun Yu's avatar
Hongkun Yu committed
122
123
  ]
  if [arg for arg in required_arguments if arg is None]:
Hongkun Yu's avatar
Hongkun Yu committed
124
125
126
    raise ValueError("`train_input_fn`, `total_training_steps`, "
                     "`steps_per_epoch`, `steps_per_loop`, `optimizer` and "
                     "`learning_rate_fn` are required parameters.")
Hongkun Yu's avatar
Hongkun Yu committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
  if not model_dir:
    raise TypeError("Model directory must be specified.")
  # pylint: disable=protected-access
  train_iterator = data_utils._get_input_iterator(train_input_fn, strategy)
  # pylint: enable=protected-access
  train_summary_writer = None
  eval_summary_writer = None
  if not tf.io.gfile.exists(model_dir):
    tf.io.gfile.mkdir(model_dir)
  if test_input_fn:
    eval_summary_writer = tf.summary.create_file_writer(
        os.path.join(model_dir, "summaries/eval"))
  if steps_per_loop >= _MIN_SUMMARY_STEPS:
    # Only writes summary when the stats are collected sufficiently over
    # enough steps.
    train_summary_writer = tf.summary.create_file_writer(
        os.path.join(model_dir, "summaries/train"))

  with strategy.scope():
    model = model_fn()

    if init_checkpoint:
      logging.info("restore from %s", init_checkpoint)
      checkpoint = tf.train.Checkpoint(model=model)
      checkpoint.restore(init_checkpoint)

    model.optimizer = optimizer

    if not hasattr(model, "optimizer"):
      raise ValueError("User should set optimizer attribute to model.")

    train_loss_metric = tf.keras.metrics.Mean("training_loss", dtype=tf.float32)
    train_metric = None
    if metric_fn:
      train_metric = metric_fn()

    def _replicated_step(inputs, mem=None):
      """Replicated training step."""

      inputs["mems"] = mem
      with tf.GradientTape() as tape:
        mem, logits = model(inputs, training=True)
        loss = model.losses
        train_loss_metric.update_state(loss)
        if train_metric:
          train_metric.update_state(inputs["label_ids"], logits)
        scaled_loss = loss[0] * 1.0 / float(strategy.num_replicas_in_sync)

      # Collects training variables.
      tvars = model.trainable_variables
      grads = tape.gradient(scaled_loss, tvars)
      clipped, _ = tf.clip_by_global_norm(grads, clip_norm=1.0)

      if input_meta_data["lr_layer_decay_rate"] != 1.0:
        n_layer = 0
        for i in range(len(clipped)):
          m = re.search(r"model/transformer/layer_(\d+?)/", tvars[i].name)
          if not m:
            continue
          n_layer = max(n_layer, int(m.group(1)) + 1)

        for i in range(len(clipped)):
          for l in range(n_layer):
            if "model/transformer/layer_{}/".format(l) in tvars[i].name:
              abs_rate = input_meta_data["lr_layer_decay_rate"]**(
                  n_layer - 1 - l)
              clipped[i] *= abs_rate
              logging.info("Apply mult {:.4f} to layer-{} grad of {}".format(
                  abs_rate, l, tvars[i].name))
              break

      optimizer.apply_gradients(zip(clipped, tvars))
      if input_meta_data["mem_len"] > 0:
Hongkun Yu's avatar
Hongkun Yu committed
200
        return mem
Hongkun Yu's avatar
Hongkun Yu committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

    def train_steps(iterator, steps):
      """Performs distributed training steps in a loop.

      Args:
        iterator: the distributed iterator of training datasets.
        steps: an tf.int32 integer tensor to specify number of steps to run
          inside host training loop.

      Raises:
        ValueError: Any of the arguments or tensor shapes are invalid.

      Returns:
        logits: logits computed.
      """
      if not isinstance(steps, tf.Tensor):
        raise ValueError("steps should be an Tensor. Python object may cause "
                         "retracing.")

      def cache_fn():
        """Initializes memory tensor used in XLNet pretraining."""
        mems = []
        if input_meta_data["mem_len"] > 0:
          for _ in range(input_meta_data["n_layer"]):
            zeros = tf.zeros([
                input_meta_data["mem_len"],
                input_meta_data["batch_size_per_core"],
                input_meta_data["d_model"]
            ],
                             dtype=tf.float32)
            mems.append(zeros)
        return mems

      if input_meta_data["mem_len"] > 0:
        mem = strategy.experimental_run_v2(cache_fn)
        for _ in tf.range(steps):
Hongkun Yu's avatar
Hongkun Yu committed
237
          mem = strategy.experimental_run_v2(
Hongkun Yu's avatar
Hongkun Yu committed
238
239
240
241
242
243
              _replicated_step, args=(
                  next(iterator),
                  mem,
              ))
      else:
        for _ in tf.range(steps):
Hongkun Yu's avatar
Hongkun Yu committed
244
245
246
247
          strategy.experimental_run_v2(_replicated_step, args=(next(iterator),))

    if not run_eagerly:
      train_steps = tf.function(train_steps)
Hongkun Yu's avatar
Hongkun Yu committed
248
249
250
251
252
253
254
255
256
257
258
259

    logging.info("Start training...")
    checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
    latest_checkpoint_file = tf.train.latest_checkpoint(model_dir)
    if latest_checkpoint_file:
      logging.info("Checkpoint file %s found and restoring from checkpoint",
                   latest_checkpoint_file)
      checkpoint.restore(latest_checkpoint_file)
      logging.info("Loading from checkpoint file completed")

    current_step = optimizer.iterations.numpy()
    checkpoint_name = "xlnet_step_{step}.ckpt"
Hongkun Yu's avatar
Hongkun Yu committed
260

Hongkun Yu's avatar
Hongkun Yu committed
261
262
263
264
265
266
    while current_step < total_training_steps:
      train_loss_metric.reset_states()
      if train_metric:
        train_metric.reset_states()

      steps = _steps_to_run(current_step, steps_per_epoch, steps_per_loop)
Hongkun Yu's avatar
Hongkun Yu committed
267
      train_steps(train_iterator, tf.convert_to_tensor(steps, dtype=tf.int32))
Hongkun Yu's avatar
Hongkun Yu committed
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
      current_step += steps
      train_loss = _float_metric_value(train_loss_metric)
      log_stream = "Train step: %d/%d  /  lr = %.9f  /  loss = %.7f" % (
          current_step, total_training_steps, learning_rate_fn(current_step),
          train_loss)
      if train_metric:
        log_stream += "  /  %s = %f" % (train_metric.name,
                                        _float_metric_value(train_metric))
      logging.info(log_stream)
      if train_summary_writer:
        with train_summary_writer.as_default():
          tf.summary.scalar(
              "learning_rate",
              learning_rate_fn(current_step),
              step=current_step)
          tf.summary.scalar(
              train_loss_metric.name, train_loss, step=current_step)
          if train_metric:
            tf.summary.scalar(
                train_metric.name,
                _float_metric_value(train_metric),
                step=current_step)
          train_summary_writer.flush()
      if model_dir:
        if (save_steps is None) or (save_steps and
                                    current_step % save_steps == 0):
          _save_checkpoint(checkpoint, model_dir,
                           checkpoint_name.format(step=current_step))

      if test_input_fn and current_step % steps_per_epoch == 0:

        logging.info("Running evaluation after step: %s.", current_step)

        eval_fn(model, current_step, eval_summary_writer)
    if model_dir:
      _save_checkpoint(checkpoint, model_dir,
                       checkpoint_name.format(step=current_step))
    if test_input_fn:
      logging.info("Running final evaluation after training is complete.")
      eval_fn(model, current_step, eval_summary_writer)

Hongkun Yu's avatar
Hongkun Yu committed
309
    return model