run_pretrain.py 5 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""XLNet classification finetuning runner in tf2.0."""

from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function

import functools

from absl import app
from absl import flags
from absl import logging
import tensorflow as tf
# pylint: disable=unused-import
from official.nlp import xlnet_config
from official.nlp import xlnet_modeling as modeling
from official.nlp.xlnet import common_flags
from official.nlp.xlnet import data_utils
from official.nlp.xlnet import optimization
from official.nlp.xlnet import training_utils
Hongkun Yu's avatar
Hongkun Yu committed
35
from official.utils.misc import tpu_lib
Hongkun Yu's avatar
Hongkun Yu committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

flags.DEFINE_integer(
    "mask_alpha", default=6, help="How many tokens to form a group.")
flags.DEFINE_integer(
    "mask_beta", default=1, help="How many tokens to mask within each group.")
flags.DEFINE_integer(
    "num_predict",
    default=None,
    help="Number of tokens to predict in partial prediction.")
flags.DEFINE_integer("perm_size", 0, help="Window size of permutation.")

FLAGS = flags.FLAGS


def get_pretrainxlnet_model(model_config, run_config):
  model = modeling.PretrainingXLNetModel(model_config, run_config, name="model")
  return model


def get_primary_cpu_task(use_remote_tpu=False):
  """Returns primary CPU task to which input pipeline Ops are put."""

  # Remote Eager Borg job configures the TPU worker with job name 'worker'.
  return "/job:worker" if use_remote_tpu else ""


def main(unused_argv):
  del unused_argv
  use_remote_tpu = False
  num_hosts = 1
  if FLAGS.strategy_type == "mirror":
    strategy = tf.distribute.MirroredStrategy()
  elif FLAGS.strategy_type == "tpu":
Hongkun Yu's avatar
Hongkun Yu committed
69
    # Initialize TPU System.
Hongkun Yu's avatar
Hongkun Yu committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
    cluster_resolver = tpu_lib.tpu_initialize(FLAGS.tpu)
    strategy = tf.distribute.experimental.TPUStrategy(cluster_resolver)
    use_remote_tpu = True
    topology = FLAGS.tpu_topology.split("x")
    total_num_core = 2 * int(topology[0]) * int(topology[1])
    num_hosts = total_num_core // FLAGS.num_core_per_host
  else:
    raise ValueError("The distribution strategy type is not supported: %s" %
                     FLAGS.strategy_type)
  if strategy:
    logging.info("***** Number of cores used : %d",
                 strategy.num_replicas_in_sync)
    logging.info("***** Number of hosts used : %d",
                 num_hosts)
  train_input_fn = functools.partial(
      data_utils.get_pretrain_input_data, FLAGS.train_batch_size, FLAGS.seq_len,
      strategy, FLAGS.train_tfrecord_path, FLAGS.reuse_len, FLAGS.perm_size,
      FLAGS.mask_alpha, FLAGS.mask_beta, FLAGS.num_predict, FLAGS.bi_data,
      FLAGS.uncased, num_hosts)

  total_training_steps = FLAGS.train_steps
  steps_per_epoch = int(FLAGS.train_data_size / FLAGS.train_batch_size)
  steps_per_loop = FLAGS.iterations

  optimizer, learning_rate_fn = optimization.create_optimizer(
      init_lr=FLAGS.learning_rate,
      num_train_steps=total_training_steps,
      num_warmup_steps=FLAGS.warmup_steps,
      min_lr_ratio=FLAGS.min_lr_ratio,
      adam_epsilon=FLAGS.adam_epsilon,
      weight_decay_rate=FLAGS.weight_decay_rate)

  model_config = xlnet_config.XLNetConfig(FLAGS)
  run_config = xlnet_config.create_run_config(True, False, FLAGS)
  input_meta_data = {}
  input_meta_data["d_model"] = FLAGS.d_model
  input_meta_data["mem_len"] = FLAGS.mem_len
  input_meta_data["batch_size_per_core"] = int(FLAGS.train_batch_size /
                                               strategy.num_replicas_in_sync)
  input_meta_data["n_layer"] = FLAGS.n_layer
  input_meta_data["lr_layer_decay_rate"] = FLAGS.lr_layer_decay_rate
  model_fn = functools.partial(get_pretrainxlnet_model, model_config,
                               run_config)

  with tf.device(get_primary_cpu_task(use_remote_tpu)):
    training_utils.train(
        strategy=strategy,
        model_fn=model_fn,
        input_meta_data=input_meta_data,
        eval_fn=None,
        metric_fn=None,
        train_input_fn=train_input_fn,
        test_input_fn=None,
        init_checkpoint=FLAGS.init_checkpoint,
        total_training_steps=total_training_steps,
        steps_per_epoch=steps_per_epoch,
        steps_per_loop=steps_per_loop,
        optimizer=optimizer,
        learning_rate_fn=learning_rate_fn,
        model_dir=FLAGS.model_dir,
        save_steps=FLAGS.save_steps)


if __name__ == "__main__":
  assert tf.version.VERSION.startswith('2.')
  app.run(main)