run_classifier.py 7.46 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""XLNet classification finetuning runner in tf2.0."""

from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function

import functools
from absl import app
from absl import flags
from absl import logging

import numpy as np
import tensorflow as tf
# pylint: disable=unused-import
from official.nlp import xlnet_config
from official.nlp import xlnet_modeling as modeling
from official.nlp.xlnet import common_flags
from official.nlp.xlnet import data_utils
from official.nlp.xlnet import optimization
from official.nlp.xlnet import training_utils
Hongkun Yu's avatar
Hongkun Yu committed
36
from official.utils.misc import tpu_lib
Hongkun Yu's avatar
Hongkun Yu committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

flags.DEFINE_integer("n_class", default=2, help="Number of classes.")

FLAGS = flags.FLAGS


def get_classificationxlnet_model(model_config, run_config, n_class):
  model = modeling.ClassificationXLNetModel(
      model_config, run_config, n_class, name="model")
  return model


def run_evaluation(strategy,
                   test_input_fn,
                   eval_steps,
                   model,
                   step,
                   eval_summary_writer=None):
  """Run evaluation for classification task.

  Args:
    strategy: distribution strategy.
    test_input_fn: input function for evaluation data.
    eval_steps: total number of evaluation steps.
    model: keras model object.
    step: current train step.
    eval_summary_writer: summary writer used to record evaluation metrics.  As
      there are fake data samples in validation set, we use mask to get rid of
      them when calculating the accuracy. For the reason that there will be
      dynamic-shape tensor, we first collect logits, labels and masks from TPU
      and calculate the accuracy via numpy locally.
  """

  def _test_step_fn(inputs):
    """Replicated validation step."""

    inputs["mems"] = None
    _, logits = model(inputs, training=False)
    return logits, inputs["label_ids"], inputs["is_real_example"]

  @tf.function
  def _run_evaluation(test_iterator):
    """Runs validation steps."""
    logits, labels, masks = strategy.experimental_run_v2(
        _test_step_fn, args=(next(test_iterator),))
    return logits, labels, masks

  # pylint: disable=protected-access
  test_iterator = data_utils._get_input_iterator(test_input_fn, strategy)
  # pylint: enable=protected-access
  correct = 0
  total = 0
  for _ in range(eval_steps):
    logits, labels, masks = _run_evaluation(test_iterator)
    logits = strategy.experimental_local_results(logits)
    labels = strategy.experimental_local_results(labels)
    masks = strategy.experimental_local_results(masks)
    merged_logits = []
    merged_labels = []
    merged_masks = []

    for i in range(strategy.num_replicas_in_sync):
      merged_logits.append(logits[i].numpy())
      merged_labels.append(labels[i].numpy())
      merged_masks.append(masks[i].numpy())
    merged_logits = np.vstack(np.array(merged_logits))
    merged_labels = np.hstack(np.array(merged_labels))
    merged_masks = np.hstack(np.array(merged_masks))
    real_index = np.where(np.equal(merged_masks, 1))
    correct += np.sum(
        np.equal(
            np.argmax(merged_logits[real_index], axis=-1),
            merged_labels[real_index]))
    total += np.shape(real_index)[-1]
  logging.info("Train step: %d  /  acc = %d/%d = %f", step, correct, total,
               float(correct) / float(total))
  if eval_summary_writer:
    with eval_summary_writer.as_default():
      tf.summary.scalar("eval_acc", float(correct) / float(total), step=step)
      eval_summary_writer.flush()


def get_metric_fn():
  train_acc_metric = tf.keras.metrics.SparseCategoricalAccuracy(
      "acc", dtype=tf.float32)
  return train_acc_metric


def get_primary_cpu_task(use_remote_tpu=False):
  """Returns primary CPU task to which input pipeline Ops are put."""

  # Remote Eager Borg job configures the TPU worker with job name 'worker'.
  return "/job:worker" if use_remote_tpu else ""


def main(unused_argv):
  del unused_argv
  use_remote_tpu = False
  if FLAGS.strategy_type == "mirror":
    strategy = tf.distribute.MirroredStrategy()
  elif FLAGS.strategy_type == "tpu":
Hongkun Yu's avatar
Hongkun Yu committed
138
    # Initialize TPU System.
Hongkun Yu's avatar
Hongkun Yu committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
    cluster_resolver = tpu_lib.tpu_initialize(FLAGS.tpu)
    strategy = tf.distribute.experimental.TPUStrategy(cluster_resolver)
    use_remote_tpu = True
  else:
    raise ValueError("The distribution strategy type is not supported: %s" %
                     FLAGS.strategy_type)
  if strategy:
    logging.info("***** Number of cores used : %d",
                 strategy.num_replicas_in_sync)
  train_input_fn = functools.partial(data_utils.get_classification_input_data,
                                     FLAGS.train_batch_size, FLAGS.seq_len,
                                     strategy, True, FLAGS.train_tfrecord_path)
  test_input_fn = functools.partial(data_utils.get_classification_input_data,
                                    FLAGS.test_batch_size, FLAGS.seq_len,
                                    strategy, False, FLAGS.test_tfrecord_path)

  total_training_steps = FLAGS.train_steps
  steps_per_epoch = int(FLAGS.train_data_size / FLAGS.train_batch_size)
  steps_per_loop = FLAGS.iterations
  eval_steps = int(FLAGS.test_data_size / FLAGS.test_batch_size)
  eval_fn = functools.partial(run_evaluation, strategy, test_input_fn,
                              eval_steps)
  optimizer, learning_rate_fn = optimization.create_optimizer(
      FLAGS.learning_rate,
      total_training_steps,
      FLAGS.warmup_steps,
      adam_epsilon=FLAGS.adam_epsilon)
  model_config = xlnet_config.XLNetConfig(FLAGS)
  run_config = xlnet_config.create_run_config(True, False, FLAGS)
  model_fn = functools.partial(get_classificationxlnet_model, model_config,
                               run_config, FLAGS.n_class)
  input_meta_data = {}
  input_meta_data["d_model"] = FLAGS.d_model
  input_meta_data["mem_len"] = FLAGS.mem_len
  input_meta_data["batch_size_per_core"] = int(FLAGS.train_batch_size /
                                               strategy.num_replicas_in_sync)
  input_meta_data["n_layer"] = FLAGS.n_layer
  input_meta_data["lr_layer_decay_rate"] = FLAGS.lr_layer_decay_rate
  input_meta_data["n_class"] = FLAGS.n_class

  with tf.device(get_primary_cpu_task(use_remote_tpu)):
    training_utils.train(
        strategy=strategy,
        model_fn=model_fn,
        input_meta_data=input_meta_data,
        eval_fn=eval_fn,
        metric_fn=get_metric_fn,
        train_input_fn=train_input_fn,
        test_input_fn=test_input_fn,
        init_checkpoint=FLAGS.init_checkpoint,
        total_training_steps=total_training_steps,
        steps_per_epoch=steps_per_epoch,
        steps_per_loop=steps_per_loop,
        optimizer=optimizer,
        learning_rate_fn=learning_rate_fn,
        model_dir=FLAGS.model_dir)


if __name__ == "__main__":
  assert tf.version.VERSION.startswith('2.')
  app.run(main)