keras_imagenet_benchmark.py 5.77 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes Keras benchmarks and accuracy tests."""
from __future__ import print_function

import os
19
import time
20
21
22
23

from absl import flags

from official.resnet import imagenet_main
Toby Boyd's avatar
Toby Boyd committed
24
from official.resnet.keras import keras_benchmark
25
26
27
from official.resnet.keras import keras_common
from official.resnet.keras import keras_imagenet_main

Toby Boyd's avatar
Toby Boyd committed
28
29
MIN_TOP_1_ACCURACY = 0.76
MAX_TOP_1_ACCURACY = 0.77
30
31
DATA_DIR = '/data/imagenet/'

Toby Boyd's avatar
Toby Boyd committed
32
FLAGS = flags.FLAGS
33
34


Toby Boyd's avatar
Toby Boyd committed
35
36
class Resnet50KerasAccuracy(keras_benchmark.KerasBenchmark):
  """Benchmark accuracy tests for ResNet50 in Keras."""
37
38

  def __init__(self, output_dir=None):
39
40
41
    flag_methods = [
        keras_common.define_keras_flags, imagenet_main.define_imagenet_flags
    ]
Toby Boyd's avatar
Toby Boyd committed
42

43
44
    super(Resnet50KerasAccuracy, self).__init__(
        output_dir=output_dir, flag_methods=flag_methods)
45

Toby Boyd's avatar
Toby Boyd committed
46
  def benchmark_graph_8_gpu(self):
47
48
    """Test Keras model with Keras fit/dist_strat and 8 GPUs."""
    self._setup()
Toby Boyd's avatar
Toby Boyd committed
49
50
    FLAGS.num_gpus = 8
    FLAGS.data_dir = DATA_DIR
51
    FLAGS.batch_size = 128 * 8
Toby Boyd's avatar
Toby Boyd committed
52
53
54
    FLAGS.train_epochs = 90
    FLAGS.model_dir = self._get_model_dir('keras_resnet50_8_gpu')
    FLAGS.dtype = 'fp32'
55
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
56
57

  def benchmark_8_gpu(self):
58
59
    """Test Keras model with eager, dist_strat and 8 GPUs."""
    self._setup()
Toby Boyd's avatar
Toby Boyd committed
60
61
    FLAGS.num_gpus = 8
    FLAGS.data_dir = DATA_DIR
62
    FLAGS.batch_size = 128 * 8
Toby Boyd's avatar
Toby Boyd committed
63
64
65
66
    FLAGS.train_epochs = 90
    FLAGS.model_dir = self._get_model_dir('keras_resnet50_eager_8_gpu')
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
67
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
68

69
70
71
72
73
74
  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
    stats = keras_imagenet_main.run(flags.FLAGS)
    wall_time_sec = time.time() - start_time_sec

    super(Resnet50KerasAccuracy, self)._report_benchmark(
Toby Boyd's avatar
Toby Boyd committed
75
        stats,
76
        wall_time_sec,
Toby Boyd's avatar
Toby Boyd committed
77
78
        top_1_min=MIN_TOP_1_ACCURACY,
        top_1_max=MAX_TOP_1_ACCURACY,
79
        total_batch_size=FLAGS.batch_size,
Toby Boyd's avatar
Toby Boyd committed
80
        log_steps=100)
81
82
83
84

  def _get_model_dir(self, folder_name):
    return os.path.join(self.output_dir, folder_name)

Toby Boyd's avatar
Toby Boyd committed
85
86
87
88
89

class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark):
  """Resnet50 benchmarks."""

  def __init__(self, output_dir=None, default_flags=None):
90
91
92
    flag_methods = [
        keras_common.define_keras_flags, imagenet_main.define_imagenet_flags
    ]
Toby Boyd's avatar
Toby Boyd committed
93
94
95
96
97
98

    super(Resnet50KerasBenchmarkBase, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=default_flags)

99
100
  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
Toby Boyd's avatar
Toby Boyd committed
101
    stats = keras_imagenet_main.run(FLAGS)
102
103
104
105
106
107
108
    wall_time_sec = time.time() - start_time_sec

    super(Resnet50KerasBenchmarkBase, self)._report_benchmark(
        stats,
        wall_time_sec,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)
Toby Boyd's avatar
Toby Boyd committed
109
110
111
112
113
114
115
116

  def benchmark_1_gpu_no_dist_strat(self):
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.turn_off_distribution_strategy = True
    FLAGS.batch_size = 128
117
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
118
119
120
121
122
123
124
125

  def benchmark_graph_1_gpu_no_dist_strat(self):
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
    FLAGS.turn_off_distribution_strategy = True
    FLAGS.batch_size = 128
126
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
127
128
129
130
131
132
133
134

  def benchmark_1_gpu(self):
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.turn_off_distribution_strategy = False
    FLAGS.batch_size = 128
135
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
136
137
138
139
140
141
142
143

  def benchmark_graph_1_gpu(self):
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
    FLAGS.turn_off_distribution_strategy = False
    FLAGS.batch_size = 128
144
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
145
146
147
148
149
150
151
152

  def benchmark_8_gpu(self):
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.turn_off_distribution_strategy = False
    FLAGS.batch_size = 128 * 8  # 8 GPUs
153
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
154
155
156
157
158
159
160
161

  def benchmark_graph_8_gpu(self):
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = False
    FLAGS.turn_off_distribution_strategy = False
    FLAGS.batch_size = 128 * 8  # 8 GPUs
162
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
163

Toby Boyd's avatar
Toby Boyd committed
164
165
166
167
168
169
  def fill_report_object(self, stats):
    super(Resnet50KerasBenchmarkBase, self).fill_report_object(
        stats,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)

Toby Boyd's avatar
Toby Boyd committed
170
171
172
173
174
175
176
177
178
179
180

class Resnet50KerasBenchmarkSynth(Resnet50KerasBenchmarkBase):
  """Resnet50 synthetic benchmark tests."""

  def __init__(self, output_dir=None):
    def_flags = {}
    def_flags['skip_eval'] = True
    def_flags['use_synthetic_data'] = True
    def_flags['train_steps'] = 110
    def_flags['log_steps'] = 10

181
182
    super(Resnet50KerasBenchmarkSynth, self).__init__(
        output_dir=output_dir, default_flags=def_flags)
Toby Boyd's avatar
Toby Boyd committed
183
184
185
186
187
188
189
190
191
192
193
194


class Resnet50KerasBenchmarkReal(Resnet50KerasBenchmarkBase):
  """Resnet50 real data benchmark tests."""

  def __init__(self, output_dir=None):
    def_flags = {}
    def_flags['skip_eval'] = True
    def_flags['data_dir'] = DATA_DIR
    def_flags['train_steps'] = 110
    def_flags['log_steps'] = 10

195
196
    super(Resnet50KerasBenchmarkReal, self).__init__(
        output_dir=output_dir, default_flags=def_flags)