keras_benchmark.py 4.74 KB
Newer Older
Toby Boyd's avatar
Toby Boyd committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes Keras benchmarks and accuracy tests."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
22
23
import time
import json
Toby Boyd's avatar
Toby Boyd committed
24
25
26
27
28
29
30
31

from absl import flags
from absl.testing import flagsaver
import tensorflow as tf  # pylint: disable=g-bad-import-order

FLAGS = flags.FLAGS


32
class KerasBenchmark(tf.test.Benchmark):
Toby Boyd's avatar
Toby Boyd committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
  """Base benchmark class with methods to simplify testing."""
  local_flags = None

  def __init__(self, output_dir=None, default_flags=None, flag_methods=None):
    self.output_dir = output_dir
    self.default_flags = default_flags or {}
    self.flag_methods = flag_methods or {}

  def _get_model_dir(self, folder_name):
    return os.path.join(self.output_dir, folder_name)

  def _setup(self):
    """Sets up and resets flags before each test."""
    tf.logging.set_verbosity(tf.logging.DEBUG)
    if KerasBenchmark.local_flags is None:
      for flag_method in self.flag_methods:
        flag_method()
      # Loads flags to get defaults to then override. List cannot be empty.
      flags.FLAGS(['foo'])
      # Overrides flag values with defaults for the class of tests.
      for k, v in self.default_flags.items():
        setattr(FLAGS, k, v)
      saved_flag_values = flagsaver.save_flag_values()
      KerasBenchmark.local_flags = saved_flag_values
    else:
      flagsaver.restore_flag_values(KerasBenchmark.local_flags)

60
61
62
63
64
65
66
67
68
  def _report_benchmark(self,
                        stats,
                        wall_time_sec,
                        top_1_max=None,
                        top_1_min=None,
                        log_steps=None,
                        total_batch_size=None,
                        warmup=1):
    """Report benchmark results by writing to local protobuf file
Toby Boyd's avatar
Toby Boyd committed
69
70
71

    Args:
      stats: dict returned from keras models with known entries.
72
      wall_time_sec: the during of the benchmark execution in seconds
Toby Boyd's avatar
Toby Boyd committed
73
74
75
76
77
78
      top_1_max: highest passing level for top_1 accuracy.
      top_1_min: lowest passing level for top_1 accuracy.
      log_steps: How often the log was created for stats['step_timestamp_log'].
      total_batch_size: Global batch-size.
      warmup: number of entries in stats['step_timestamp_log'] to ignore.
    """
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

    extras = {}
    if 'accuracy_top_1' in stats:
      extras['accuracy'] = self._json_description(
          stats['accuracy_top_1'],
          priority=0,
          min_value=top_1_min,
          max_value=top_1_max)
      extras['top_1_train_accuracy'] = self._json_description(
          stats['training_accuracy_top_1'], priority=1)

    if (warmup and 'step_timestamp_log' in stats and
        len(stats['step_timestamp_log']) > warmup):
      # first entry in the time_log is start of step 1. The rest of the
      # entries are the end of each step recorded
      time_log = stats['step_timestamp_log']
      elapsed = time_log[-1].timestamp - time_log[warmup].timestamp
      num_examples = (
          total_batch_size * log_steps * (len(time_log) - warmup - 1))
      examples_per_sec = num_examples / elapsed
      extras['exp_per_second'] = self._json_description(
          examples_per_sec, priority=2)

    if 'avg_exp_per_second' in stats:
      extras['avg_exp_per_second'] = self._json_description(
          stats['avg_exp_per_second'], priority=3)

    self.report_benchmark(iters=-1, wall_time=wall_time_sec, extras=extras)

  def _json_description(self,
                        value,
                        priority=None,
                        min_value=None,
                        max_value=None):
    """Get a json-formatted string describing the attributes for a metric"""

    attributes = {}
    attributes['value'] = value
    if priority:
      attributes['priority'] = priority
    if min_value:
      attributes['min_value'] = min_value
    if max_value:
      attributes['max_value'] = max_value

    if min_value or max_value:
      succeeded = True
      if min_value and value < min_value:
        succeeded = False
      if max_value and value > max_value:
        succeeded = False
      attributes['succeeded'] = succeeded

    return json.dumps(attributes)