common.py 16.2 KB
Newer Older
1
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Common util functions and classes used by both keras cifar and imagenet."""
16
17
18
19
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

20
import os
21

Toby Boyd's avatar
Toby Boyd committed
22
23
from absl import flags
import tensorflow as tf
24

25
from tensorflow.python.keras.optimizer_v2 import gradient_descent as gradient_descent_v2
26
import tensorflow_model_optimization as tfmot
27
from official.utils.flags import core as flags_core
28
from official.utils.misc import keras_utils
29

Shining Sun's avatar
Shining Sun committed
30
FLAGS = flags.FLAGS
Shining Sun's avatar
Shining Sun committed
31
BASE_LEARNING_RATE = 0.1  # This matches Jing's version.
32
TRAIN_TOP_1 = 'training_accuracy_top_1'
Hongkun Yu's avatar
Hongkun Yu committed
33
34
35
36
37
LR_SCHEDULE = [    # (multiplier, epoch to start) tuples
    (1.0, 5), (0.1, 30), (0.01, 60), (0.001, 80)
]


38
39
40
41
42
43
44
45
46
47
48
49
class PiecewiseConstantDecayWithWarmup(
    tf.keras.optimizers.schedules.LearningRateSchedule):
  """Piecewise constant decay with warmup schedule."""

  def __init__(self, batch_size, epoch_size, warmup_epochs, boundaries,
               multipliers, compute_lr_on_cpu=True, name=None):
    super(PiecewiseConstantDecayWithWarmup, self).__init__()
    if len(boundaries) != len(multipliers) - 1:
      raise ValueError('The length of boundaries must be 1 less than the '
                       'length of multipliers')

    base_lr_batch_size = 256
Zongwei Zhou's avatar
Zongwei Zhou committed
50
    steps_per_epoch = epoch_size // batch_size
51
52

    self.rescaled_lr = BASE_LEARNING_RATE * batch_size / base_lr_batch_size
Zongwei Zhou's avatar
Zongwei Zhou committed
53
    self.step_boundaries = [float(steps_per_epoch) * x for x in boundaries]
54
    self.lr_values = [self.rescaled_lr * m for m in multipliers]
Zongwei Zhou's avatar
Zongwei Zhou committed
55
    self.warmup_steps = warmup_epochs * steps_per_epoch
56
57
58
    self.compute_lr_on_cpu = compute_lr_on_cpu
    self.name = name

59
    self.learning_rate_ops_cache = {}
60
61
62
63
64
65
66
67

  def __call__(self, step):
    if tf.executing_eagerly():
      return self._get_learning_rate(step)

    # In an eager function or graph, the current implementation of optimizer
    # repeatedly call and thus create ops for the learning rate schedule. To
    # avoid this, we cache the ops if not executing eagerly.
68
69
    graph = tf.compat.v1.get_default_graph()
    if graph not in self.learning_rate_ops_cache:
70
71
      if self.compute_lr_on_cpu:
        with tf.device('/device:CPU:0'):
72
          self.learning_rate_ops_cache[graph] = self._get_learning_rate(step)
73
      else:
74
75
        self.learning_rate_ops_cache[graph] = self._get_learning_rate(step)
    return self.learning_rate_ops_cache[graph]
76
77
78

  def _get_learning_rate(self, step):
    """Compute learning rate at given step."""
ayushmankumar7's avatar
ayushmankumar7 committed
79
    with tf.name_scope('PiecewiseConstantDecayWithWarmup'):
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
      def warmup_lr(step):
        return self.rescaled_lr * (
            tf.cast(step, tf.float32) / tf.cast(self.warmup_steps, tf.float32))
      def piecewise_lr(step):
        return tf.compat.v1.train.piecewise_constant(
            step, self.step_boundaries, self.lr_values)
      return tf.cond(step < self.warmup_steps,
                     lambda: warmup_lr(step),
                     lambda: piecewise_lr(step))

  def get_config(self):
    return {
        'rescaled_lr': self.rescaled_lr,
        'step_boundaries': self.step_boundaries,
        'lr_values': self.lr_values,
        'warmup_steps': self.warmup_steps,
        'compute_lr_on_cpu': self.compute_lr_on_cpu,
        'name': self.name
    }


def get_optimizer(learning_rate=0.1):
102
103
  """Returns optimizer to use."""
  # The learning_rate is overwritten at the beginning of each step by callback.
104
  return gradient_descent_v2.SGD(learning_rate=learning_rate, momentum=0.9)
105
106


107
108
109
110
111
def get_callbacks(
    steps_per_epoch,
    pruning_method=None,
    enable_checkpoint_and_export=False,
    model_dir=None):
112
  """Returns common callbacks."""
113
114
115
116
  time_callback = keras_utils.TimeHistory(
      FLAGS.batch_size,
      FLAGS.log_steps,
      logdir=FLAGS.model_dir if FLAGS.enable_tensorboard else None)
117
118
  callbacks = [time_callback]

119
120
121
122
123
124
  if FLAGS.enable_tensorboard:
    tensorboard_callback = tf.keras.callbacks.TensorBoard(
        log_dir=FLAGS.model_dir)
    callbacks.append(tensorboard_callback)

  if FLAGS.profile_steps:
125
126
127
    profiler_callback = keras_utils.get_profiler_callback(
        FLAGS.model_dir,
        FLAGS.profile_steps,
Zongwei Zhou's avatar
Zongwei Zhou committed
128
129
        FLAGS.enable_tensorboard,
        steps_per_epoch)
130
131
    callbacks.append(profiler_callback)

132
133
134
135
136
137
138
139
140
141
142
143
144
  is_pruning_enabled = pruning_method is not None
  if is_pruning_enabled:
    callbacks.append(tfmot.sparsity.keras.UpdatePruningStep())
    if model_dir is not None:
      callbacks.append(tfmot.sparsity.keras.PruningSummaries(
          log_dir=model_dir, profile_batch=0))

  if enable_checkpoint_and_export:
    if model_dir is not None:
      ckpt_full_path = os.path.join(model_dir, 'model.ckpt-{epoch:04d}')
      callbacks.append(
          tf.keras.callbacks.ModelCheckpoint(ckpt_full_path,
                                             save_weights_only=True))
145
146
147
148
  return callbacks


def build_stats(history, eval_output, callbacks):
149
150
151
152
153
154
155
  """Normalizes and returns dictionary of stats.

  Args:
    history: Results of the training step. Supports both categorical_accuracy
      and sparse_categorical_accuracy.
    eval_output: Output of the eval step. Assumes first value is eval_loss and
      second value is accuracy_top_1.
156
157
    callbacks: a list of callbacks which might include a time history callback
      used during keras.fit.
158
159
160
161
162
163

  Returns:
    Dictionary of normalized results.
  """
  stats = {}
  if eval_output:
164
165
    stats['accuracy_top_1'] = float(eval_output[1])
    stats['eval_loss'] = float(eval_output[0])
166
167
168
  if history and history.history:
    train_hist = history.history
    # Gets final loss from training.
169
    stats['loss'] = float(train_hist['loss'][-1])
170
171
    # Gets top_1 training accuracy.
    if 'categorical_accuracy' in train_hist:
172
      stats[TRAIN_TOP_1] = float(train_hist['categorical_accuracy'][-1])
173
    elif 'sparse_categorical_accuracy' in train_hist:
174
      stats[TRAIN_TOP_1] = float(train_hist['sparse_categorical_accuracy'][-1])
Allen Wang's avatar
Allen Wang committed
175
176
    elif 'accuracy' in train_hist:
      stats[TRAIN_TOP_1] = float(train_hist['accuracy'][-1])
177

178
179
180
181
182
183
184
185
186
  if not callbacks:
    return stats

  # Look for the time history callback which was used during keras.fit
  for callback in callbacks:
    if isinstance(callback, keras_utils.TimeHistory):
      timestamp_log = callback.timestamp_log
      stats['step_timestamp_log'] = timestamp_log
      stats['train_finish_time'] = callback.train_finish_time
187
188
189
      if callback.epoch_runtime_log:
        stats['avg_exp_per_second'] = callback.average_examples_per_second

190
191
192
  return stats


193
194
195
196
197
def define_keras_flags(
    dynamic_loss_scale=True,
    model=False,
    optimizer=False,
    pretrained_filepath=False):
198
  """Define flags for Keras models."""
199
200
201
  flags_core.define_base(clean=True, num_gpu=True, run_eagerly=True,
                         train_epochs=True, epochs_between_evals=True,
                         distribution_strategy=True)
202
  flags_core.define_performance(num_parallel_calls=False,
203
204
205
206
                                synthetic_data=True,
                                dtype=True,
                                all_reduce_alg=True,
                                num_packs=True,
207
208
209
210
                                tf_gpu_thread_mode=True,
                                datasets_num_private_threads=True,
                                dynamic_loss_scale=dynamic_loss_scale,
                                loss_scale=True,
211
                                fp16_implementation=True,
212
                                tf_data_experimental_slack=True,
213
                                enable_xla=True,
214
                                training_dataset_cache=True)
215
216
  flags_core.define_image()
  flags_core.define_benchmark()
217
  flags_core.define_distribution()
218
  flags.adopt_module_key_flags(flags_core)
219

Shining Sun's avatar
Shining Sun committed
220
  flags.DEFINE_boolean(name='enable_eager', default=False, help='Enable eager?')
221
  flags.DEFINE_boolean(name='skip_eval', default=False, help='Skip evaluation?')
222
223
224
225
226
227
228
229
230
  # TODO(b/135607288): Remove this flag once we understand the root cause of
  # slowdown when setting the learning phase in Keras backend.
  flags.DEFINE_boolean(
      name='set_learning_phase_to_train', default=True,
      help='If skip eval, also set Keras learning phase to 1 (training).')
  flags.DEFINE_boolean(
      name='explicit_gpu_placement', default=False,
      help='If not using distribution strategy, explicitly set device scope '
      'for the Keras training loop.')
Haoyu Zhang's avatar
Haoyu Zhang committed
231
232
  flags.DEFINE_boolean(name='use_trivial_model', default=False,
                       help='Whether to use a trivial Keras model.')
233
234
  flags.DEFINE_boolean(name='report_accuracy_metrics', default=True,
                       help='Report metrics during training and evaluation.')
235
  flags.DEFINE_boolean(name='use_tensor_lr', default=True,
236
                       help='Use learning rate tensor instead of a callback.')
237
238
239
  flags.DEFINE_boolean(
      name='enable_tensorboard', default=False,
      help='Whether to enable Tensorboard callback.')
Shining Sun's avatar
Shining Sun committed
240
  flags.DEFINE_integer(
241
242
      name='train_steps', default=None,
      help='The number of steps to run for training. If it is larger than '
243
244
      '# batches per epoch, then use # batches per epoch. This flag will be '
      'ignored if train_epochs is set to be larger than 1. ')
245
246
  flags.DEFINE_string(
      name='profile_steps', default=None,
Zongwei Zhou's avatar
Zongwei Zhou committed
247
      help='Save profiling data to model dir at given range of global steps. The '
248
249
250
251
252
      'value must be a comma separated pair of positive integers, specifying '
      'the first and last step to profile. For example, "--profile_steps=2,4" '
      'triggers the profiler to process 3 steps, starting from the 2nd step. '
      'Note that profiler has a non-trivial performance overhead, and the '
      'output file can be gigantic if profiling many steps.')
253
254
255
  flags.DEFINE_boolean(
      name='batchnorm_spatial_persistent', default=True,
      help='Enable the spacial persistent mode for CuDNN batch norm kernel.')
256
257
258
  flags.DEFINE_boolean(
      name='enable_get_next_as_optional', default=False,
      help='Enable get_next_as_optional behavior in DistributedIterator.')
Hongkun Yu's avatar
Hongkun Yu committed
259
260
261
  flags.DEFINE_boolean(
      name='enable_checkpoint_and_export', default=False,
      help='Whether to enable a checkpoint callback and export the savedmodel.')
Jing Li's avatar
Jing Li committed
262
263
264
  flags.DEFINE_string(
      name='tpu', default='', help='TPU address to connect to.')
  flags.DEFINE_integer(
265
266
267
      name='steps_per_loop',
      default=500,
      help='Number of steps per training loop. Only training step happens '
Jing Li's avatar
Jing Li committed
268
269
      'inside the loop. Callbacks will not be called inside. Will be capped at '
      'steps per epoch.')
270
271
272
273
274
275
  flags.DEFINE_boolean(
      name='use_tf_while_loop',
      default=True,
      help='Whether to build a tf.while_loop inside the training loop on the '
      'host. Setting it to True is critical to have peak performance on '
      'TPU.')
Shining Sun's avatar
Shining Sun committed
276

277
278
279
280
281
282
283
  if model:
    flags.DEFINE_string('model', 'resnet50_v1.5',
                        'Name of model preset. (mobilenet, resnet50_v1.5)')
  if optimizer:
    flags.DEFINE_string('optimizer', 'resnet50_default',
                        'Name of optimizer preset. '
                        '(mobilenet_default, resnet50_default)')
Jaehong Kim's avatar
Jaehong Kim committed
284
285
286
287
288
289
290
291
    # TODO(kimjaehong): Replace as general hyper-params not only for mobilenet.
    flags.DEFINE_float('initial_learning_rate_per_sample', 0.00007,
                       'Initial value of learning rate per sample for '
                       'mobilenet_default.')
    flags.DEFINE_float('lr_decay_factor', 0.94,
                       'Learning rate decay factor for mobilenet_default.')
    flags.DEFINE_float('num_epochs_per_decay', 2.5,
                       'Number of epochs per decay for mobilenet_default.')
292
293
294
295
  if pretrained_filepath:
    flags.DEFINE_string('pretrained_filepath', '',
                        'Pretrained file path.')

296

Allen Wang's avatar
Allen Wang committed
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
def get_synth_data(height, width, num_channels, num_classes, dtype):
  """Creates a set of synthetic random data.

  Args:
    height: Integer height that will be used to create a fake image tensor.
    width: Integer width that will be used to create a fake image tensor.
    num_channels: Integer depth that will be used to create a fake image tensor.
    num_classes: Number of classes that should be represented in the fake labels
      tensor
    dtype: Data type for features/images.

  Returns:
    A tuple of tensors representing the inputs and labels.

  """
  # Synthetic input should be within [0, 255].
  inputs = tf.random.truncated_normal([height, width, num_channels],
                                      dtype=dtype,
                                      mean=127,
                                      stddev=60,
                                      name='synthetic_inputs')
  labels = tf.random.uniform([1],
                             minval=0,
                             maxval=num_classes - 1,
                             dtype=tf.int32,
                             name='synthetic_labels')
  return inputs, labels


326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
def define_pruning_flags():
  """Define flags for pruning methods."""
  flags.DEFINE_string('pruning_method', None,
                      'Pruning method.'
                      'None (no pruning) or polynomial_decay.')
  flags.DEFINE_float('pruning_initial_sparsity', 0.0,
                     'Initial sparsity for pruning.')
  flags.DEFINE_float('pruning_final_sparsity', 0.5,
                     'Final sparsity for pruning.')
  flags.DEFINE_integer('pruning_begin_step', 0,
                       'Begin step for pruning.')
  flags.DEFINE_integer('pruning_end_step', 100000,
                       'End step for pruning.')
  flags.DEFINE_integer('pruning_frequency', 100,
                       'Frequency for pruning.')


Shining Sun's avatar
Shining Sun committed
343
def get_synth_input_fn(height, width, num_channels, num_classes,
344
                       dtype=tf.float32, drop_remainder=True):
Shining Sun's avatar
Shining Sun committed
345
346
347
348
349
  """Returns an input function that returns a dataset with random data.

  This input_fn returns a data set that iterates over a set of random data and
  bypasses all preprocessing, e.g. jpeg decode and copy. The host to device
  copy is still included. This used to find the upper throughput bound when
Shining Sun's avatar
Shining Sun committed
350
  tuning the full input pipeline.
Shining Sun's avatar
Shining Sun committed
351
352
353
354
355
356
357
358

  Args:
    height: Integer height that will be used to create a fake image tensor.
    width: Integer width that will be used to create a fake image tensor.
    num_channels: Integer depth that will be used to create a fake image tensor.
    num_classes: Number of classes that should be represented in the fake labels
      tensor
    dtype: Data type for features/images.
359
360
    drop_remainder: A boolean indicates whether to drop the remainder of the
      batches. If True, the batch dimension will be static.
Shining Sun's avatar
Shining Sun committed
361
362
363
364
365
366
367
368

  Returns:
    An input_fn that can be used in place of a real one to return a dataset
    that can be used for iteration.
  """
  # pylint: disable=unused-argument
  def input_fn(is_training, data_dir, batch_size, *args, **kwargs):
    """Returns dataset filled with random data."""
Allen Wang's avatar
Allen Wang committed
369
370
371
372
373
    inputs, labels = get_synth_data(height=height,
                                    width=width,
                                    num_channels=num_channels,
                                    num_classes=num_classes,
                                    dtype=dtype)
374
375
    # Cast to float32 for Keras model.
    labels = tf.cast(labels, dtype=tf.float32)
Shining Sun's avatar
Shining Sun committed
376
    data = tf.data.Dataset.from_tensors((inputs, labels)).repeat()
377
378

    # `drop_remainder` will make dataset produce outputs with known shapes.
379
    data = data.batch(batch_size, drop_remainder=drop_remainder)
380
    data = data.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
Shining Sun's avatar
Shining Sun committed
381
382
383
    return data

  return input_fn
Shining Sun's avatar
Shining Sun committed
384
385


386
def set_cudnn_batchnorm_mode():
Toby Boyd's avatar
Toby Boyd committed
387
388
389
390
391
  """Set CuDNN batchnorm mode for better performance.

     Note: Spatial Persistent mode may lead to accuracy losses for certain
     models.
  """
392
393
394
  if FLAGS.batchnorm_spatial_persistent:
    os.environ['TF_USE_CUDNN_BATCHNORM_SPATIAL_PERSISTENT'] = '1'
  else:
395
    os.environ.pop('TF_USE_CUDNN_BATCHNORM_SPATIAL_PERSISTENT', None)