trainer.py 17.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Detection model trainer.

This file provides a generic training method that can be used to train a
DetectionModel.
"""

import functools

import tensorflow as tf

from object_detection.builders import optimizer_builder
from object_detection.builders import preprocessor_builder
from object_detection.core import batcher
from object_detection.core import preprocessor
from object_detection.core import standard_fields as fields
from object_detection.utils import ops as util_ops
from object_detection.utils import variables_helper
from deployment import model_deploy

slim = tf.contrib.slim


38
39
40
def create_input_queue(batch_size_per_clone, create_tensor_dict_fn,
                       batch_queue_capacity, num_batch_queue_threads,
                       prefetch_queue_capacity, data_augmentation_options):
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
  """Sets up reader, prefetcher and returns input queue.

  Args:
    batch_size_per_clone: batch size to use per clone.
    create_tensor_dict_fn: function to create tensor dictionary.
    batch_queue_capacity: maximum number of elements to store within a queue.
    num_batch_queue_threads: number of threads to use for batching.
    prefetch_queue_capacity: maximum capacity of the queue used to prefetch
                             assembled batches.
    data_augmentation_options: a list of tuples, where each tuple contains a
      data augmentation function and a dictionary containing arguments and their
      values (see preprocessor.py).

  Returns:
    input queue: a batcher.BatchQueue object holding enqueued tensor_dicts
      (which hold images, boxes and targets).  To get a batch of tensor_dicts,
      call input_queue.Dequeue().
  """
  tensor_dict = create_tensor_dict_fn()

  tensor_dict[fields.InputDataFields.image] = tf.expand_dims(
      tensor_dict[fields.InputDataFields.image], 0)

  images = tensor_dict[fields.InputDataFields.image]
  float_images = tf.to_float(images)
  tensor_dict[fields.InputDataFields.image] = float_images

68
69
70
71
  include_instance_masks = (fields.InputDataFields.groundtruth_instance_masks
                            in tensor_dict)
  include_keypoints = (fields.InputDataFields.groundtruth_keypoints
                       in tensor_dict)
72
73
  include_multiclass_scores = (fields.InputDataFields.multiclass_scores
                               in tensor_dict)
74
  if data_augmentation_options:
75
76
77
    tensor_dict = preprocessor.preprocess(
        tensor_dict, data_augmentation_options,
        func_arg_map=preprocessor.get_default_func_arg_map(
78
            include_label_weights=True,
79
            include_multiclass_scores=include_multiclass_scores,
80
81
            include_instance_masks=include_instance_masks,
            include_keypoints=include_keypoints))
82
83
84
85
86
87
88
89
90
91

  input_queue = batcher.BatchQueue(
      tensor_dict,
      batch_size=batch_size_per_clone,
      batch_queue_capacity=batch_queue_capacity,
      num_batch_queue_threads=num_batch_queue_threads,
      prefetch_queue_capacity=prefetch_queue_capacity)
  return input_queue


92
93
94
95
def get_inputs(input_queue,
               num_classes,
               merge_multiple_label_boxes=False,
               use_multiclass_scores=False):
96
  """Dequeues batch and constructs inputs to object detection model.
97
98
99
100

  Args:
    input_queue: BatchQueue object holding enqueued tensor_dicts.
    num_classes: Number of classes.
101
102
103
104
    merge_multiple_label_boxes: Whether to merge boxes with multiple labels
      or not. Defaults to false. Merged boxes are represented with a single
      box and a k-hot encoding of the multiple labels associated with the
      boxes.
105
106
    use_multiclass_scores: Whether to use multiclass scores instead of
      groundtruth_classes.
107
108
109

  Returns:
    images: a list of 3-D float tensor of images.
110
    image_keys: a list of string keys for the images.
111
112
    locations_list: a list of tensors of shape [num_boxes, 4]
      containing the corners of the groundtruth boxes.
113
114
    classes_list: a list of padded one-hot (or K-hot) float32 tensors containing
      target classes.
115
116
117
    masks_list: a list of 3-D float tensors of shape [num_boxes, image_height,
      image_width] containing instance masks for objects if present in the
      input_queue. Else returns None.
118
119
120
    keypoints_list: a list of 3-D float tensors of shape [num_boxes,
      num_keypoints, 2] containing keypoints for objects if present in the
      input queue. Else returns None.
121
122
    weights_lists: a list of 1-D float32 tensors of shape [num_boxes]
      containing groundtruth weight for each box.
123
124
125
126
  """
  read_data_list = input_queue.dequeue()
  label_id_offset = 1
  def extract_images_and_targets(read_data):
127
    """Extract images and targets from the input dict."""
128
    image = read_data[fields.InputDataFields.image]
129
130
131
    key = ''
    if fields.InputDataFields.source_id in read_data:
      key = read_data[fields.InputDataFields.source_id]
132
133
134
135
    location_gt = read_data[fields.InputDataFields.groundtruth_boxes]
    classes_gt = tf.cast(read_data[fields.InputDataFields.groundtruth_classes],
                         tf.int32)
    classes_gt -= label_id_offset
136
137
138
139
140
141
142

    if merge_multiple_label_boxes and use_multiclass_scores:
      raise ValueError(
          'Using both merge_multiple_label_boxes and use_multiclass_scores is'
          'not supported'
      )

143
144
145
    if merge_multiple_label_boxes:
      location_gt, classes_gt, _ = util_ops.merge_boxes_with_multiple_labels(
          location_gt, classes_gt, num_classes)
146
      classes_gt = tf.cast(classes_gt, tf.float32)
147
148
149
    elif use_multiclass_scores:
      classes_gt = tf.cast(read_data[fields.InputDataFields.multiclass_scores],
                           tf.float32)
150
151
152
    else:
      classes_gt = util_ops.padded_one_hot_encoding(
          indices=classes_gt, depth=num_classes, left_pad=0)
153
    masks_gt = read_data.get(fields.InputDataFields.groundtruth_instance_masks)
154
155
156
157
    keypoints_gt = read_data.get(fields.InputDataFields.groundtruth_keypoints)
    if (merge_multiple_label_boxes and (
        masks_gt is not None or keypoints_gt is not None)):
      raise NotImplementedError('Multi-label support is only for boxes.')
158
159
160
161
    weights_gt = read_data.get(
        fields.InputDataFields.groundtruth_weights)
    return (image, key, location_gt, classes_gt, masks_gt, keypoints_gt,
            weights_gt)
162

163
164
165
  return zip(*map(extract_images_and_targets, read_data_list))


166
def _create_losses(input_queue, create_model_fn, train_config):
167
168
169
170
171
  """Creates loss function for a DetectionModel.

  Args:
    input_queue: BatchQueue object holding enqueued tensor_dicts.
    create_model_fn: A function to create the DetectionModel.
172
    train_config: a train_pb2.TrainConfig protobuf.
173
174
  """
  detection_model = create_model_fn()
175
  (images, _, groundtruth_boxes_list, groundtruth_classes_list,
176
177
   groundtruth_masks_list, groundtruth_keypoints_list,
   groundtruth_weights_list) = get_inputs(
178
179
       input_queue,
       detection_model.num_classes,
180
181
       train_config.merge_multiple_label_boxes,
       train_config.use_multiclass_scores)
182
183
184
185
186
187
188
189
190
191
192

  preprocessed_images = []
  true_image_shapes = []
  for image in images:
    resized_image, true_image_shape = detection_model.preprocess(image)
    preprocessed_images.append(resized_image)
    true_image_shapes.append(true_image_shape)

  images = tf.concat(preprocessed_images, 0)
  true_image_shapes = tf.concat(true_image_shapes, 0)

193
194
  if any(mask is None for mask in groundtruth_masks_list):
    groundtruth_masks_list = None
195
196
  if any(keypoints is None for keypoints in groundtruth_keypoints_list):
    groundtruth_keypoints_list = None
197

198
199
200
201
202
203
  detection_model.provide_groundtruth(
      groundtruth_boxes_list,
      groundtruth_classes_list,
      groundtruth_masks_list,
      groundtruth_keypoints_list,
      groundtruth_weights_list=groundtruth_weights_list)
204
  prediction_dict = detection_model.predict(images, true_image_shapes)
205

206
  losses_dict = detection_model.loss(prediction_dict, true_image_shapes)
207
208
209
210
  for loss_tensor in losses_dict.values():
    tf.losses.add_loss(loss_tensor)


211
212
213
214
215
216
217
218
219
220
221
222
223
def train(create_tensor_dict_fn,
          create_model_fn,
          train_config,
          master,
          task,
          num_clones,
          worker_replicas,
          clone_on_cpu,
          ps_tasks,
          worker_job_name,
          is_chief,
          train_dir,
          graph_hook_fn=None):
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
  """Training function for detection models.

  Args:
    create_tensor_dict_fn: a function to create a tensor input dictionary.
    create_model_fn: a function that creates a DetectionModel and generates
                     losses.
    train_config: a train_pb2.TrainConfig protobuf.
    master: BNS name of the TensorFlow master to use.
    task: The task id of this training instance.
    num_clones: The number of clones to run per machine.
    worker_replicas: The number of work replicas to train with.
    clone_on_cpu: True if clones should be forced to run on CPU.
    ps_tasks: Number of parameter server tasks.
    worker_job_name: Name of the worker job.
    is_chief: Whether this replica is the chief replica.
    train_dir: Directory to write checkpoints and training summaries to.
240
241
242
243
    graph_hook_fn: Optional function that is called after the inference graph is
      built (before optimization). This is helpful to perform additional changes
      to the training graph such as adding FakeQuant ops. The function should
      modify the default graph.
244
245
246

  Raises:
    ValueError: If both num_clones > 1 and train_config.sync_replicas is true.
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
  """

  detection_model = create_model_fn()
  data_augmentation_options = [
      preprocessor_builder.build(step)
      for step in train_config.data_augmentation_options]

  with tf.Graph().as_default():
    # Build a configuration specifying multi-GPU and multi-replicas.
    deploy_config = model_deploy.DeploymentConfig(
        num_clones=num_clones,
        clone_on_cpu=clone_on_cpu,
        replica_id=task,
        num_replicas=worker_replicas,
        num_ps_tasks=ps_tasks,
        worker_job_name=worker_job_name)

    # Place the global step on the device storing the variables.
    with tf.device(deploy_config.variables_device()):
      global_step = slim.create_global_step()

268
269
270
271
272
273
274
    if num_clones != 1 and train_config.sync_replicas:
      raise ValueError('In Synchronous SGD mode num_clones must ',
                       'be 1. Found num_clones: {}'.format(num_clones))
    batch_size = train_config.batch_size // num_clones
    if train_config.sync_replicas:
      batch_size //= train_config.replicas_to_aggregate

275
    with tf.device(deploy_config.inputs_device()):
276
      input_queue = create_input_queue(
277
          batch_size, create_tensor_dict_fn,
278
279
280
          train_config.batch_queue_capacity,
          train_config.num_batch_queue_threads,
          train_config.prefetch_queue_capacity, data_augmentation_options)
281
282

    # Gather initial summaries.
283
    # TODO(rathodv): See if summaries can be added/extracted from global tf
284
    # collections so that they don't have to be passed around.
285
286
287
288
    summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))
    global_summaries = set([])

    model_fn = functools.partial(_create_losses,
289
290
                                 create_model_fn=create_model_fn,
                                 train_config=train_config)
291
292
293
    clones = model_deploy.create_clones(deploy_config, model_fn, [input_queue])
    first_clone_scope = clones[0].scope

294
295
296
297
    if graph_hook_fn:
      with tf.device(deploy_config.variables_device()):
        graph_hook_fn()

298
299
300
301
302
    # Gather update_ops from the first clone. These contain, for example,
    # the updates for the batch_norm variables created by model_fn.
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, first_clone_scope)

    with tf.device(deploy_config.optimizer_device()):
303
304
305
      training_optimizer, optimizer_summary_vars = optimizer_builder.build(
          train_config.optimizer)
      for var in optimizer_summary_vars:
306
        tf.summary.scalar(var.op.name, var, family='LearningRate')
307
308
309

    sync_optimizer = None
    if train_config.sync_replicas:
310
      training_optimizer = tf.train.SyncReplicasOptimizer(
311
312
          training_optimizer,
          replicas_to_aggregate=train_config.replicas_to_aggregate,
313
          total_num_replicas=worker_replicas)
314
315
316
      sync_optimizer = training_optimizer

    with tf.device(deploy_config.optimizer_device()):
317
318
      regularization_losses = (None if train_config.add_regularization_loss
                               else [])
319
      total_loss, grads_and_vars = model_deploy.optimize_clones(
320
321
          clones, training_optimizer,
          regularization_losses=regularization_losses)
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
      total_loss = tf.check_numerics(total_loss, 'LossTensor is inf or nan.')

      # Optionally multiply bias gradients by train_config.bias_grad_multiplier.
      if train_config.bias_grad_multiplier:
        biases_regex_list = ['.*/biases']
        grads_and_vars = variables_helper.multiply_gradients_matching_regex(
            grads_and_vars,
            biases_regex_list,
            multiplier=train_config.bias_grad_multiplier)

      # Optionally freeze some layers by setting their gradients to be zero.
      if train_config.freeze_variables:
        grads_and_vars = variables_helper.freeze_gradients_matching_regex(
            grads_and_vars, train_config.freeze_variables)

      # Optionally clip gradients
      if train_config.gradient_clipping_by_norm > 0:
        with tf.name_scope('clip_grads'):
          grads_and_vars = slim.learning.clip_gradient_norms(
              grads_and_vars, train_config.gradient_clipping_by_norm)

      # Create gradient updates.
      grad_updates = training_optimizer.apply_gradients(grads_and_vars,
                                                        global_step=global_step)
      update_ops.append(grad_updates)
347
      update_op = tf.group(*update_ops, name='update_barrier')
348
349
350
351
352
      with tf.control_dependencies([update_op]):
        train_tensor = tf.identity(total_loss, name='train_op')

    # Add summaries.
    for model_var in slim.get_model_variables():
353
354
      global_summaries.add(tf.summary.histogram('ModelVars/' +
                                                model_var.op.name, model_var))
355
    for loss_tensor in tf.losses.get_losses():
356
357
      global_summaries.add(tf.summary.scalar('Losses/' + loss_tensor.op.name,
                                             loss_tensor))
358
    global_summaries.add(
359
        tf.summary.scalar('Losses/TotalLoss', tf.losses.get_total_loss()))
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378

    # Add the summaries from the first clone. These contain the summaries
    # created by model_fn and either optimize_clones() or _gather_clone_loss().
    summaries |= set(tf.get_collection(tf.GraphKeys.SUMMARIES,
                                       first_clone_scope))
    summaries |= global_summaries

    # Merge all summaries together.
    summary_op = tf.summary.merge(list(summaries), name='summary_op')

    # Soft placement allows placing on CPU ops without GPU implementation.
    session_config = tf.ConfigProto(allow_soft_placement=True,
                                    log_device_placement=False)

    # Save checkpoints regularly.
    keep_checkpoint_every_n_hours = train_config.keep_checkpoint_every_n_hours
    saver = tf.train.Saver(
        keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours)

379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
    # Create ops required to initialize the model from a given checkpoint.
    init_fn = None
    if train_config.fine_tune_checkpoint:
      if not train_config.fine_tune_checkpoint_type:
        # train_config.from_detection_checkpoint field is deprecated. For
        # backward compatibility, fine_tune_checkpoint_type is set based on
        # from_detection_checkpoint.
        if train_config.from_detection_checkpoint:
          train_config.fine_tune_checkpoint_type = 'detection'
        else:
          train_config.fine_tune_checkpoint_type = 'classification'
      var_map = detection_model.restore_map(
          fine_tune_checkpoint_type=train_config.fine_tune_checkpoint_type,
          load_all_detection_checkpoint_vars=(
              train_config.load_all_detection_checkpoint_vars))
      available_var_map = (variables_helper.
                           get_variables_available_in_checkpoint(
396
397
                               var_map, train_config.fine_tune_checkpoint,
                               include_global_step=False))
398
399
400
401
402
      init_saver = tf.train.Saver(available_var_map)
      def initializer_fn(sess):
        init_saver.restore(sess, train_config.fine_tune_checkpoint)
      init_fn = initializer_fn

403
404
405
406
407
408
409
410
411
412
413
414
415
416
    slim.learning.train(
        train_tensor,
        logdir=train_dir,
        master=master,
        is_chief=is_chief,
        session_config=session_config,
        startup_delay_steps=train_config.startup_delay_steps,
        init_fn=init_fn,
        summary_op=summary_op,
        number_of_steps=(
            train_config.num_steps if train_config.num_steps else None),
        save_summaries_secs=120,
        sync_optimizer=sync_optimizer,
        saver=saver)