encoder.py 7.77 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Transformer-based text encoder network."""
# pylint: disable=g-classes-have-attributes

import tensorflow as tf

from official.modeling import activations
from official.nlp import keras_nlp
from official.nlp.modeling import layers
from official.nlp.projects.bigbird import attention


@tf.keras.utils.register_keras_serializable(package='Text')
class BigBirdEncoder(tf.keras.Model):
  """Transformer-based encoder network with BigBird attentions.

  *Note* that the network is constructed by
  [Keras Functional API](https://keras.io/guides/functional_api/).

33
  Args:
Hongkun Yu's avatar
Hongkun Yu committed
34
35
36
37
38
    vocab_size: The size of the token vocabulary.
    hidden_size: The size of the transformer hidden layers.
    num_layers: The number of transformer layers.
    num_attention_heads: The number of attention heads for each transformer. The
      hidden size must be divisible by the number of attention heads.
39
40
41
42
    max_position_embeddings: The maximum length of position embeddings that this
      encoder can consume. If None, max_position_embeddings uses the value from
      sequence length. This determines the variable shape for positional
      embeddings.
Hongkun Yu's avatar
Hongkun Yu committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
    type_vocab_size: The number of types that the 'type_ids' input can take.
    intermediate_size: The intermediate size for the transformer layers.
    activation: The activation to use for the transformer layers.
    dropout_rate: The dropout rate to use for the transformer layers.
    attention_dropout_rate: The dropout rate to use for the attention layers
      within the transformer layers.
    initializer: The initialzer to use for all weights in this encoder.
    embedding_width: The width of the word embeddings. If the embedding width is
      not equal to hidden size, embedding parameters will be factorized into two
      matrices in the shape of ['vocab_size', 'embedding_width'] and
      ['embedding_width', 'hidden_size'] ('embedding_width' is usually much
      smaller than 'hidden_size').
  """

  def __init__(self,
               vocab_size,
               hidden_size=768,
               num_layers=12,
               num_attention_heads=12,
62
               max_position_embeddings=attention.MAX_SEQ_LEN,
Hongkun Yu's avatar
Hongkun Yu committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
               type_vocab_size=16,
               intermediate_size=3072,
               block_size=64,
               num_rand_blocks=3,
               activation=activations.gelu,
               dropout_rate=0.1,
               attention_dropout_rate=0.1,
               initializer=tf.keras.initializers.TruncatedNormal(stddev=0.02),
               embedding_width=None,
               **kwargs):
    activation = tf.keras.activations.get(activation)
    initializer = tf.keras.initializers.get(initializer)

    self._self_setattr_tracking = False
    self._config_dict = {
        'vocab_size': vocab_size,
        'hidden_size': hidden_size,
        'num_layers': num_layers,
        'num_attention_heads': num_attention_heads,
82
        'max_position_embeddings': max_position_embeddings,
Hongkun Yu's avatar
Hongkun Yu committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
        'type_vocab_size': type_vocab_size,
        'intermediate_size': intermediate_size,
        'block_size': block_size,
        'num_rand_blocks': num_rand_blocks,
        'activation': tf.keras.activations.serialize(activation),
        'dropout_rate': dropout_rate,
        'attention_dropout_rate': attention_dropout_rate,
        'initializer': tf.keras.initializers.serialize(initializer),
        'embedding_width': embedding_width,
    }

    word_ids = tf.keras.layers.Input(
        shape=(None,), dtype=tf.int32, name='input_word_ids')
    mask = tf.keras.layers.Input(
        shape=(None,), dtype=tf.int32, name='input_mask')
    type_ids = tf.keras.layers.Input(
        shape=(None,), dtype=tf.int32, name='input_type_ids')

    if embedding_width is None:
      embedding_width = hidden_size
    self._embedding_layer = keras_nlp.layers.OnDeviceEmbedding(
        vocab_size=vocab_size,
        embedding_width=embedding_width,
        initializer=initializer,
        name='word_embeddings')
    word_embeddings = self._embedding_layer(word_ids)

    # Always uses dynamic slicing for simplicity.
    self._position_embedding_layer = keras_nlp.layers.PositionEmbedding(
        initializer=initializer,
113
        max_length=max_position_embeddings,
Hongkun Yu's avatar
Hongkun Yu committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
        name='position_embedding')
    position_embeddings = self._position_embedding_layer(word_embeddings)
    self._type_embedding_layer = keras_nlp.layers.OnDeviceEmbedding(
        vocab_size=type_vocab_size,
        embedding_width=embedding_width,
        initializer=initializer,
        use_one_hot=True,
        name='type_embeddings')
    type_embeddings = self._type_embedding_layer(type_ids)

    embeddings = tf.keras.layers.Add()(
        [word_embeddings, position_embeddings, type_embeddings])

    self._embedding_norm_layer = tf.keras.layers.LayerNormalization(
        name='embeddings/layer_norm', axis=-1, epsilon=1e-12, dtype=tf.float32)

    embeddings = self._embedding_norm_layer(embeddings)
    embeddings = tf.keras.layers.Dropout(rate=dropout_rate)(embeddings)

    # We project the 'embedding' output to 'hidden_size' if it is not already
    # 'hidden_size'.
    if embedding_width != hidden_size:
      self._embedding_projection = tf.keras.layers.experimental.EinsumDense(
          '...x,xy->...y',
          output_shape=hidden_size,
          bias_axes='y',
          kernel_initializer=initializer,
          name='embedding_projection')
      embeddings = self._embedding_projection(embeddings)

    self._transformer_layers = []
    data = embeddings
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
146
147
    masks = attention.BigBirdMasks(block_size=block_size)(
        tf.cast(mask, embeddings.dtype))
Hongkun Yu's avatar
Hongkun Yu committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
    encoder_outputs = []
    attn_head_dim = hidden_size // num_attention_heads
    for i in range(num_layers):
      layer = layers.TransformerScaffold(
          num_attention_heads,
          intermediate_size,
          activation,
          attention_cls=attention.BigBirdAttention,
          attention_cfg=dict(
              num_heads=num_attention_heads,
              key_dim=attn_head_dim,
              kernel_initializer=initializer,
              from_block_size=block_size,
              to_block_size=block_size,
              num_rand_blocks=num_rand_blocks,
163
              max_rand_mask_length=max_position_embeddings,
Hongkun Yu's avatar
Hongkun Yu committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
              seed=i),
          dropout_rate=dropout_rate,
          attention_dropout_rate=dropout_rate,
          kernel_initializer=initializer)
      self._transformer_layers.append(layer)
      data = layer([data, masks])
      encoder_outputs.append(data)

    outputs = dict(
        sequence_output=encoder_outputs[-1], encoder_outputs=encoder_outputs)
    super().__init__(
        inputs=[word_ids, mask, type_ids], outputs=outputs, **kwargs)

  def get_embedding_table(self):
    return self._embedding_layer.embeddings

  def get_embedding_layer(self):
    return self._embedding_layer

  def get_config(self):
    return self._config_dict

  @property
  def transformer_layers(self):
    """List of Transformer layers in the encoder."""
    return self._transformer_layers

  @property
  def pooler_layer(self):
    """The pooler dense layer after the transformer layers."""
    return self._pooler_layer

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)