main.py 7.87 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Main function to train various object detection models."""

from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function

from absl import app
from absl import flags
from absl import logging
import functools
import os
import pprint
import tensorflow.compat.v2 as tf

from official.modeling.hyperparams import params_dict
from official.modeling.training import distributed_executor as executor
from official.vision.detection.configs import factory as config_factory
from official.vision.detection.dataloader import input_reader
from official.vision.detection.dataloader import mode_keys as ModeKeys
from official.vision.detection.executor.detection_executor import DetectionDistributedExecutor
from official.vision.detection.modeling import factory as model_factory

executor.initialize_common_flags()

flags.DEFINE_string(
    'mode',
    default='train',
    help='Mode to run: `train`, `eval` or `train_and_eval`.')

flags.DEFINE_string(
    'model', default='retinanet',
    help='Model to run: `retinanet` or `shapemask`.')

flags.DEFINE_string('training_file_pattern', None,
                    'Location of the train data.')

flags.DEFINE_string('eval_file_pattern', None, 'Location of ther eval data')

Yeqing Li's avatar
Yeqing Li committed
54
55
56
flags.DEFINE_string(
    'checkpoint_path', None,
    'The checkpoint path to eval. Only used in eval_once mode.')
57
58
59
60

FLAGS = flags.FLAGS


61
62
63
64
def run_executor(params,
                 train_input_fn=None,
                 eval_input_fn=None,
                 callbacks=None):
65
66
67
68
69
70
71
72
73
74
75
76
  """Runs Retinanet model on distribution strategy defined by the user."""

  model_builder = model_factory.model_generator(params)

  if FLAGS.mode == 'train':

    def _model_fn(params):
      return model_builder.build_model(params, mode=ModeKeys.TRAIN)

    builder = executor.ExecutorBuilder(
        strategy_type=params.strategy_type,
        strategy_config=params.strategy_config)
Yeqing Li's avatar
Yeqing Li committed
77
78
79
80
81
    num_workers = int(builder.strategy.num_replicas_in_sync + 7) // 8
    is_multi_host = (int(num_workers) >= 2)
    logging.info(
        'Train num_replicas_in_sync %d num_workers %d is_multi_host %s',
        builder.strategy.num_replicas_in_sync, num_workers, is_multi_host)
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    if is_multi_host:
      train_input_fn = functools.partial(
          train_input_fn,
          batch_size=params.train.batch_size //
          builder.strategy.num_replicas_in_sync)

    dist_executor = builder.build_executor(
        class_ctor=DetectionDistributedExecutor,
        params=params,
        is_multi_host=is_multi_host,
        model_fn=_model_fn,
        loss_fn=model_builder.build_loss_fn,
        predict_post_process_fn=model_builder.post_processing,
        trainable_variables_filter=model_builder
        .make_filter_trainable_variables_fn())

    return dist_executor.train(
        train_input_fn=train_input_fn,
        model_dir=params.model_dir,
        iterations_per_loop=params.train.iterations_per_loop,
        total_steps=params.train.total_steps,
        init_checkpoint=model_builder.make_restore_checkpoint_fn(),
104
        custom_callbacks=callbacks,
105
        save_config=True)
Yeqing Li's avatar
Yeqing Li committed
106
  elif FLAGS.mode == 'eval' or FLAGS.mode == 'eval_once':
107
108
109
110
111
112
113

    def _model_fn(params):
      return model_builder.build_model(params, mode=ModeKeys.PREDICT_WITH_GT)

    builder = executor.ExecutorBuilder(
        strategy_type=params.strategy_type,
        strategy_config=params.strategy_config)
Yeqing Li's avatar
Yeqing Li committed
114
115
116
117
118
119
120
121
122
123
    num_workers = int(builder.strategy.num_replicas_in_sync + 7) // 8
    is_multi_host = (int(num_workers) >= 2)
    if is_multi_host:
      eval_input_fn = functools.partial(
          eval_input_fn,
          batch_size=params.eval.batch_size //
          builder.strategy.num_replicas_in_sync)
    logging.info('Eval num_replicas_in_sync %d num_workers %d is_multi_host %s',
                 builder.strategy.num_replicas_in_sync, num_workers,
                 is_multi_host)
124
125
126
    dist_executor = builder.build_executor(
        class_ctor=DetectionDistributedExecutor,
        params=params,
Yeqing Li's avatar
Yeqing Li committed
127
        is_multi_host=is_multi_host,
128
129
130
131
132
133
        model_fn=_model_fn,
        loss_fn=model_builder.build_loss_fn,
        predict_post_process_fn=model_builder.post_processing,
        trainable_variables_filter=model_builder
        .make_filter_trainable_variables_fn())

Yeqing Li's avatar
Yeqing Li committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
    if FLAGS.mode == 'eval':
      results = dist_executor.evaluate_from_model_dir(
          model_dir=params.model_dir,
          eval_input_fn=eval_input_fn,
          eval_metric_fn=model_builder.eval_metrics,
          eval_timeout=params.eval.eval_timeout,
          min_eval_interval=params.eval.min_eval_interval,
          total_steps=params.train.total_steps)
    else:
      # Run evaluation once for a single checkpoint.
      if not FLAGS.checkpoint_path:
        raise ValueError('FLAGS.checkpoint_path cannot be empty.')
      checkpoint_path = FLAGS.checkpoint_path
      if tf.io.gfile.isdir(checkpoint_path):
        checkpoint_path = tf.train.latest_checkpoint(checkpoint_path)
      summary_writer = executor.SummaryWriter(params.model_dir, 'eval')
      results, _ = dist_executor.evaluate_checkpoint(
          checkpoint_path=checkpoint_path,
          eval_input_fn=eval_input_fn,
          eval_metric_fn=model_builder.eval_metrics,
          summary_writer=summary_writer)
155
156
157
158
    for k, v in results.items():
      logging.info('Final eval metric %s: %f', k, v)
    return results
  else:
159
    raise ValueError('Mode not found: %s.' % FLAGS.mode)
160
161


162
def run(callbacks=None):
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
  params = config_factory.config_generator(FLAGS.model)

  params = params_dict.override_params_dict(
      params, FLAGS.config_file, is_strict=True)

  params = params_dict.override_params_dict(
      params, FLAGS.params_override, is_strict=True)
  params.override(
      {
          'strategy_type': FLAGS.strategy_type,
          'model_dir': FLAGS.model_dir,
          'strategy_config': executor.strategy_flags_dict(),
      },
      is_strict=False)
  params.validate()
  params.lock()
  pp = pprint.PrettyPrinter()
  params_str = pp.pformat(params.as_dict())
  logging.info('Model Parameters: {}'.format(params_str))

  train_input_fn = None
  eval_input_fn = None
  training_file_pattern = FLAGS.training_file_pattern or params.train.train_file_pattern
  eval_file_pattern = FLAGS.eval_file_pattern or params.eval.eval_file_pattern
  if not training_file_pattern and not eval_file_pattern:
    raise ValueError('Must provide at least one of training_file_pattern and '
                     'eval_file_pattern.')

  if training_file_pattern:
    # Use global batch size for single host.
    train_input_fn = input_reader.InputFn(
        file_pattern=training_file_pattern,
        params=params,
        mode=input_reader.ModeKeys.TRAIN,
        batch_size=params.train.batch_size)

  if eval_file_pattern:
    eval_input_fn = input_reader.InputFn(
        file_pattern=eval_file_pattern,
        params=params,
        mode=input_reader.ModeKeys.PREDICT_WITH_GT,
        batch_size=params.eval.batch_size,
        num_examples=params.eval.eval_samples)
206
  return run_executor(
207
208
209
210
211
212
213
214
215
      params,
      train_input_fn=train_input_fn,
      eval_input_fn=eval_input_fn,
      callbacks=callbacks)


def main(argv):
  del argv  # Unused.

Yeqing Li's avatar
Yeqing Li committed
216
  run()
217
218
219
220
221


if __name__ == '__main__':
  assert tf.version.VERSION.startswith('2.')
  app.run(main)