inputs.py 29.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Model input function for tf-learn object detection model."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import functools

import tensorflow as tf
from object_detection.builders import dataset_builder
25
26
from object_detection.builders import image_resizer_builder
from object_detection.builders import model_builder
27
from object_detection.builders import preprocessor_builder
28
from object_detection.core import preprocessor
29
30
31
32
from object_detection.core import standard_fields as fields
from object_detection.data_decoders import tf_example_decoder
from object_detection.protos import eval_pb2
from object_detection.protos import input_reader_pb2
33
from object_detection.protos import model_pb2
34
from object_detection.protos import train_pb2
35
from object_detection.utils import config_util
36
from object_detection.utils import ops as util_ops
37
from object_detection.utils import shape_utils
38

39
40
HASH_KEY = 'hash'
HASH_BINS = 1 << 31
41
42
SERVING_FED_EXAMPLE_KEY = 'serialized_example'

43
44
45
# A map of names to methods that help build the input pipeline.
INPUT_BUILDER_UTIL_MAP = {
    'dataset_build': dataset_builder.build,
46
    'model_build': model_builder.build,
47
48
}

49

50
51
52
53
54
55
def transform_input_data(tensor_dict,
                         model_preprocess_fn,
                         image_resizer_fn,
                         num_classes,
                         data_augmentation_fn=None,
                         merge_multiple_boxes=False,
56
                         retain_original_image=False,
57
                         use_multiclass_scores=False,
58
                         use_bfloat16=False):
59
60
61
  """A single function that is responsible for all input data transformations.

  Data transformation functions are applied in the following order.
62
63
64
65
66
67
  1. If key fields.InputDataFields.image_additional_channels is present in
     tensor_dict, the additional channels will be merged into
     fields.InputDataFields.image.
  2. data_augmentation_fn (optional): applied on tensor_dict.
  3. model_preprocess_fn: applied only on image tensor in tensor_dict.
  4. image_resizer_fn: applied on original image and instance mask tensor in
68
     tensor_dict.
69
70
  5. one_hot_encoding: applied to classes tensor in tensor_dict.
  6. merge_multiple_boxes (optional): when groundtruth boxes are exactly the
71
72
73
74
75
76
77
78
79
     same they can be merged into a single box with an associated k-hot class
     label.

  Args:
    tensor_dict: dictionary containing input tensors keyed by
      fields.InputDataFields.
    model_preprocess_fn: model's preprocess function to apply on image tensor.
      This function must take in a 4-D float tensor and return a 4-D preprocess
      float tensor and a tensor containing the true image shape.
80
81
82
83
    image_resizer_fn: image resizer function to apply on groundtruth instance
      `masks. This function must take a 3-D float tensor of an image and a 3-D
      tensor of instance masks and return a resized version of these along with
      the true shapes.
84
85
86
87
88
89
90
91
    num_classes: number of max classes to one-hot (or k-hot) encode the class
      labels.
    data_augmentation_fn: (optional) data augmentation function to apply on
      input `tensor_dict`.
    merge_multiple_boxes: (optional) whether to merge multiple groundtruth boxes
      and classes for a given image if the boxes are exactly the same.
    retain_original_image: (optional) whether to retain original image in the
      output dictionary.
92
93
    use_multiclass_scores: whether to use multiclass scores as
      class targets instead of one-hot encoding of `groundtruth_classes`.
94
    use_bfloat16: (optional) a bool, whether to use bfloat16 in training.
95
96
97
98
99

  Returns:
    A dictionary keyed by fields.InputDataFields containing the tensors obtained
    after applying all the transformations.
  """
100
101
102
103
104
105
106
107
  # Reshape flattened multiclass scores tensor into a 2D tensor of shape
  # [num_boxes, num_classes].
  if fields.InputDataFields.multiclass_scores in tensor_dict:
    tensor_dict[fields.InputDataFields.multiclass_scores] = tf.reshape(
        tensor_dict[fields.InputDataFields.multiclass_scores], [
            tf.shape(tensor_dict[fields.InputDataFields.groundtruth_boxes])[0],
            num_classes
        ])
108
109
110
  if fields.InputDataFields.groundtruth_boxes in tensor_dict:
    tensor_dict = util_ops.filter_groundtruth_with_nan_box_coordinates(
        tensor_dict)
111
    tensor_dict = util_ops.filter_unrecognized_classes(tensor_dict)
112

113
  if retain_original_image:
114
    tensor_dict[fields.InputDataFields.original_image] = tf.cast(
pkulzc's avatar
pkulzc committed
115
116
        image_resizer_fn(tensor_dict[fields.InputDataFields.image], None)[0],
        tf.uint8)
117

118
119
120
121
122
  if fields.InputDataFields.image_additional_channels in tensor_dict:
    channels = tensor_dict[fields.InputDataFields.image_additional_channels]
    tensor_dict[fields.InputDataFields.image] = tf.concat(
        [tensor_dict[fields.InputDataFields.image], channels], axis=2)

123
124
125
126
127
  # Apply data augmentation ops.
  if data_augmentation_fn is not None:
    tensor_dict = data_augmentation_fn(tensor_dict)

  # Apply model preprocessing ops and resize instance masks.
128
129
  image = tensor_dict[fields.InputDataFields.image]
  preprocessed_resized_image, true_image_shape = model_preprocess_fn(
130
      tf.expand_dims(tf.cast(image, dtype=tf.float32), axis=0))
131
132
133
  if use_bfloat16:
    preprocessed_resized_image = tf.cast(
        preprocessed_resized_image, tf.bfloat16)
134
135
136
137
138
139
140
  tensor_dict[fields.InputDataFields.image] = tf.squeeze(
      preprocessed_resized_image, axis=0)
  tensor_dict[fields.InputDataFields.true_image_shape] = tf.squeeze(
      true_image_shape, axis=0)
  if fields.InputDataFields.groundtruth_instance_masks in tensor_dict:
    masks = tensor_dict[fields.InputDataFields.groundtruth_instance_masks]
    _, resized_masks, _ = image_resizer_fn(image, masks)
141
142
    if use_bfloat16:
      resized_masks = tf.cast(resized_masks, tf.bfloat16)
143
144
145
146
147
148
149
150
151
152
    tensor_dict[fields.InputDataFields.
                groundtruth_instance_masks] = resized_masks

  # Transform groundtruth classes to one hot encodings.
  label_offset = 1
  zero_indexed_groundtruth_classes = tensor_dict[
      fields.InputDataFields.groundtruth_classes] - label_offset
  tensor_dict[fields.InputDataFields.groundtruth_classes] = tf.one_hot(
      zero_indexed_groundtruth_classes, num_classes)

153
154
155
  if use_multiclass_scores:
    tensor_dict[fields.InputDataFields.groundtruth_classes] = tensor_dict[
        fields.InputDataFields.multiclass_scores]
156
  tensor_dict.pop(fields.InputDataFields.multiclass_scores, None)
157

158
159
160
  if fields.InputDataFields.groundtruth_confidences in tensor_dict:
    groundtruth_confidences = tensor_dict[
        fields.InputDataFields.groundtruth_confidences]
161
    # Map the confidences to the one-hot encoding of classes
162
    tensor_dict[fields.InputDataFields.groundtruth_confidences] = (
163
164
        tf.reshape(groundtruth_confidences, [-1, 1]) *
        tensor_dict[fields.InputDataFields.groundtruth_classes])
165
166
167
168
169
170
  else:
    groundtruth_confidences = tf.ones_like(
        zero_indexed_groundtruth_classes, dtype=tf.float32)
    tensor_dict[fields.InputDataFields.groundtruth_confidences] = (
        tensor_dict[fields.InputDataFields.groundtruth_classes])

171
  if merge_multiple_boxes:
172
173
174
175
176
177
    merged_boxes, merged_classes, merged_confidences, _ = (
        util_ops.merge_boxes_with_multiple_labels(
            tensor_dict[fields.InputDataFields.groundtruth_boxes],
            zero_indexed_groundtruth_classes,
            groundtruth_confidences,
            num_classes))
178
    merged_classes = tf.cast(merged_classes, tf.float32)
179
180
    tensor_dict[fields.InputDataFields.groundtruth_boxes] = merged_boxes
    tensor_dict[fields.InputDataFields.groundtruth_classes] = merged_classes
181
182
    tensor_dict[fields.InputDataFields.groundtruth_confidences] = (
        merged_confidences)
183
184
185
  if fields.InputDataFields.groundtruth_boxes in tensor_dict:
    tensor_dict[fields.InputDataFields.num_groundtruth_boxes] = tf.shape(
        tensor_dict[fields.InputDataFields.groundtruth_boxes])[0]
186
187
188
189

  return tensor_dict


190
191
192
193
def pad_input_data_to_static_shapes(tensor_dict, max_num_boxes, num_classes,
                                    spatial_image_shape=None):
  """Pads input tensors to static shapes.

194
195
196
  In case num_additional_channels > 0, we assume that the additional channels
  have already been concatenated to the base image.

197
198
199
200
201
202
203
204
205
206
207
208
209
210
  Args:
    tensor_dict: Tensor dictionary of input data
    max_num_boxes: Max number of groundtruth boxes needed to compute shapes for
      padding.
    num_classes: Number of classes in the dataset needed to compute shapes for
      padding.
    spatial_image_shape: A list of two integers of the form [height, width]
      containing expected spatial shape of the image.

  Returns:
    A dictionary keyed by fields.InputDataFields containing padding shapes for
    tensors in the dataset.

  Raises:
211
212
    ValueError: If groundtruth classes is neither rank 1 nor rank 2, or if we
      detect that additional channels have not been concatenated yet.
213
214
215
216
217
218
219
220
221
  """

  if not spatial_image_shape or spatial_image_shape == [-1, -1]:
    height, width = None, None
  else:
    height, width = spatial_image_shape  # pylint: disable=unpacking-non-sequence

  num_additional_channels = 0
  if fields.InputDataFields.image_additional_channels in tensor_dict:
222
223
    num_additional_channels = shape_utils.get_dim_as_int(tensor_dict[
        fields.InputDataFields.image_additional_channels].shape[2])
224
225
226
227

  # We assume that if num_additional_channels > 0, then it has already been
  # concatenated to the base image (but not the ground truth).
  num_channels = 3
228
  if fields.InputDataFields.image in tensor_dict:
229
230
    num_channels = shape_utils.get_dim_as_int(
        tensor_dict[fields.InputDataFields.image].shape[2])
231
232
233
234
235
236
237

  if num_additional_channels:
    if num_additional_channels >= num_channels:
      raise ValueError(
          'Image must be already concatenated with additional channels.')

    if (fields.InputDataFields.original_image in tensor_dict and
238
239
        shape_utils.get_dim_as_int(
            tensor_dict[fields.InputDataFields.original_image].shape[2]) ==
240
241
242
243
        num_channels):
      raise ValueError(
          'Image must be already concatenated with additional channels.')

244
245
  padding_shapes = {
      fields.InputDataFields.image: [
246
          height, width, num_channels
247
      ],
pkulzc's avatar
pkulzc committed
248
      fields.InputDataFields.original_image_spatial_shape: [2],
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
      fields.InputDataFields.image_additional_channels: [
          height, width, num_additional_channels
      ],
      fields.InputDataFields.source_id: [],
      fields.InputDataFields.filename: [],
      fields.InputDataFields.key: [],
      fields.InputDataFields.groundtruth_difficult: [max_num_boxes],
      fields.InputDataFields.groundtruth_boxes: [max_num_boxes, 4],
      fields.InputDataFields.groundtruth_classes: [max_num_boxes, num_classes],
      fields.InputDataFields.groundtruth_instance_masks: [
          max_num_boxes, height, width
      ],
      fields.InputDataFields.groundtruth_is_crowd: [max_num_boxes],
      fields.InputDataFields.groundtruth_group_of: [max_num_boxes],
      fields.InputDataFields.groundtruth_area: [max_num_boxes],
      fields.InputDataFields.groundtruth_weights: [max_num_boxes],
265
266
267
      fields.InputDataFields.groundtruth_confidences: [
          max_num_boxes, num_classes
      ],
268
269
      fields.InputDataFields.num_groundtruth_boxes: [],
      fields.InputDataFields.groundtruth_label_types: [max_num_boxes],
270
      fields.InputDataFields.groundtruth_label_weights: [max_num_boxes],
271
272
      fields.InputDataFields.true_image_shape: [3],
      fields.InputDataFields.groundtruth_image_classes: [num_classes],
273
      fields.InputDataFields.groundtruth_image_confidences: [num_classes],
274
275
276
277
  }

  if fields.InputDataFields.original_image in tensor_dict:
    padding_shapes[fields.InputDataFields.original_image] = [
278
279
280
        height, width,
        shape_utils.get_dim_as_int(tensor_dict[fields.InputDataFields.
                                               original_image].shape[2])
281
282
283
284
    ]
  if fields.InputDataFields.groundtruth_keypoints in tensor_dict:
    tensor_shape = (
        tensor_dict[fields.InputDataFields.groundtruth_keypoints].shape)
285
286
287
    padding_shape = [max_num_boxes,
                     shape_utils.get_dim_as_int(tensor_shape[1]),
                     shape_utils.get_dim_as_int(tensor_shape[2])]
288
289
290
291
    padding_shapes[fields.InputDataFields.groundtruth_keypoints] = padding_shape
  if fields.InputDataFields.groundtruth_keypoint_visibilities in tensor_dict:
    tensor_shape = tensor_dict[fields.InputDataFields.
                               groundtruth_keypoint_visibilities].shape
292
    padding_shape = [max_num_boxes, shape_utils.get_dim_as_int(tensor_shape[1])]
293
294
295
296
297
    padding_shapes[fields.InputDataFields.
                   groundtruth_keypoint_visibilities] = padding_shape

  padded_tensor_dict = {}
  for tensor_name in tensor_dict:
298
299
    padded_tensor_dict[tensor_name] = shape_utils.pad_or_clip_nd(
        tensor_dict[tensor_name], padding_shapes[tensor_name])
300
301
302
303
304
305
306
307

  # Make sure that the number of groundtruth boxes now reflects the
  # padded/clipped tensors.
  if fields.InputDataFields.num_groundtruth_boxes in padded_tensor_dict:
    padded_tensor_dict[fields.InputDataFields.num_groundtruth_boxes] = (
        tf.minimum(
            padded_tensor_dict[fields.InputDataFields.num_groundtruth_boxes],
            max_num_boxes))
308
309
310
  return padded_tensor_dict


311
312
313
314
315
316
317
318
319
320
321
322
323
324
def augment_input_data(tensor_dict, data_augmentation_options):
  """Applies data augmentation ops to input tensors.

  Args:
    tensor_dict: A dictionary of input tensors keyed by fields.InputDataFields.
    data_augmentation_options: A list of tuples, where each tuple contains a
      function and a dictionary that contains arguments and their values.
      Usually, this is the output of core/preprocessor.build.

  Returns:
    A dictionary of tensors obtained by applying data augmentation ops to the
    input tensor dictionary.
  """
  tensor_dict[fields.InputDataFields.image] = tf.expand_dims(
325
      tf.cast(tensor_dict[fields.InputDataFields.image], dtype=tf.float32), 0)
326
327
328
329
330

  include_instance_masks = (fields.InputDataFields.groundtruth_instance_masks
                            in tensor_dict)
  include_keypoints = (fields.InputDataFields.groundtruth_keypoints
                       in tensor_dict)
331
332
333
334
  include_label_weights = (fields.InputDataFields.groundtruth_weights
                           in tensor_dict)
  include_label_confidences = (fields.InputDataFields.groundtruth_confidences
                               in tensor_dict)
335
336
  include_multiclass_scores = (fields.InputDataFields.multiclass_scores in
                               tensor_dict)
337
338
339
  tensor_dict = preprocessor.preprocess(
      tensor_dict, data_augmentation_options,
      func_arg_map=preprocessor.get_default_func_arg_map(
340
341
          include_label_weights=include_label_weights,
          include_label_confidences=include_label_confidences,
342
          include_multiclass_scores=include_multiclass_scores,
343
344
345
346
347
348
349
          include_instance_masks=include_instance_masks,
          include_keypoints=include_keypoints))
  tensor_dict[fields.InputDataFields.image] = tf.squeeze(
      tensor_dict[fields.InputDataFields.image], axis=0)
  return tensor_dict


350
351
352
353
354
355
def _get_labels_dict(input_dict):
  """Extracts labels dict from input dict."""
  required_label_keys = [
      fields.InputDataFields.num_groundtruth_boxes,
      fields.InputDataFields.groundtruth_boxes,
      fields.InputDataFields.groundtruth_classes,
356
      fields.InputDataFields.groundtruth_weights,
357
358
359
360
361
362
  ]
  labels_dict = {}
  for key in required_label_keys:
    labels_dict[key] = input_dict[key]

  optional_label_keys = [
363
      fields.InputDataFields.groundtruth_confidences,
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
      fields.InputDataFields.groundtruth_keypoints,
      fields.InputDataFields.groundtruth_instance_masks,
      fields.InputDataFields.groundtruth_area,
      fields.InputDataFields.groundtruth_is_crowd,
      fields.InputDataFields.groundtruth_difficult
  ]

  for key in optional_label_keys:
    if key in input_dict:
      labels_dict[key] = input_dict[key]
  if fields.InputDataFields.groundtruth_difficult in labels_dict:
    labels_dict[fields.InputDataFields.groundtruth_difficult] = tf.cast(
        labels_dict[fields.InputDataFields.groundtruth_difficult], tf.int32)
  return labels_dict


380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
def _replace_empty_string_with_random_number(string_tensor):
  """Returns string unchanged if non-empty, and random string tensor otherwise.

  The random string is an integer 0 and 2**63 - 1, casted as string.


  Args:
    string_tensor: A tf.tensor of dtype string.

  Returns:
    out_string: A tf.tensor of dtype string. If string_tensor contains the empty
      string, out_string will contain a random integer casted to a string.
      Otherwise string_tensor is returned unchanged.

  """

  empty_string = tf.constant('', dtype=tf.string, name='EmptyString')

  random_source_id = tf.as_string(
      tf.random_uniform(shape=[], maxval=2**63 - 1, dtype=tf.int64))

  out_string = tf.cond(
      tf.equal(string_tensor, empty_string),
      true_fn=lambda: random_source_id,
      false_fn=lambda: string_tensor)

  return out_string


409
410
def _get_features_dict(input_dict):
  """Extracts features dict from input dict."""
411
412
413
414
415

  source_id = _replace_empty_string_with_random_number(
      input_dict[fields.InputDataFields.source_id])

  hash_from_source_id = tf.string_to_hash_bucket_fast(source_id, HASH_BINS)
416
417
418
419
420
  features = {
      fields.InputDataFields.image:
          input_dict[fields.InputDataFields.image],
      HASH_KEY: tf.cast(hash_from_source_id, tf.int32),
      fields.InputDataFields.true_image_shape:
pkulzc's avatar
pkulzc committed
421
422
423
          input_dict[fields.InputDataFields.true_image_shape],
      fields.InputDataFields.original_image_spatial_shape:
          input_dict[fields.InputDataFields.original_image_spatial_shape]
424
425
426
427
428
429
430
  }
  if fields.InputDataFields.original_image in input_dict:
    features[fields.InputDataFields.original_image] = input_dict[
        fields.InputDataFields.original_image]
  return features


431
432
def create_train_input_fn(train_config, train_input_config,
                          model_config):
433
434
435
436
437
  """Creates a train `input` function for `Estimator`.

  Args:
    train_config: A train_pb2.TrainConfig.
    train_input_config: An input_reader_pb2.InputReader.
438
    model_config: A model_pb2.DetectionModel.
439
440
441
442
443

  Returns:
    `input_fn` for `Estimator` in TRAIN mode.
  """

444
  def _train_input_fn(params=None):
445
446
    return train_input(train_config, train_input_config, model_config,
                       params=params)
447

448
  return _train_input_fn
449

450

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
def train_input(train_config, train_input_config,
                model_config, model=None, params=None):
  """Returns `features` and `labels` tensor dictionaries for training.

  Args:
    train_config: A train_pb2.TrainConfig.
    train_input_config: An input_reader_pb2.InputReader.
    model_config: A model_pb2.DetectionModel.
    model: A pre-constructed Detection Model.
      If None, one will be created from the config.
    params: Parameter dictionary passed from the estimator.

  Returns:
    A tf.data.Dataset that holds (features, labels) tuple.

    features: Dictionary of feature tensors.
      features[fields.InputDataFields.image] is a [batch_size, H, W, C]
        float32 tensor with preprocessed images.
      features[HASH_KEY] is a [batch_size] int32 tensor representing unique
        identifiers for the images.
      features[fields.InputDataFields.true_image_shape] is a [batch_size, 3]
        int32 tensor representing the true image shapes, as preprocessed
        images could be padded.
      features[fields.InputDataFields.original_image] (optional) is a
        [batch_size, H, W, C] float32 tensor with original images.
    labels: Dictionary of groundtruth tensors.
      labels[fields.InputDataFields.num_groundtruth_boxes] is a [batch_size]
        int32 tensor indicating the number of groundtruth boxes.
      labels[fields.InputDataFields.groundtruth_boxes] is a
        [batch_size, num_boxes, 4] float32 tensor containing the corners of
        the groundtruth boxes.
      labels[fields.InputDataFields.groundtruth_classes] is a
        [batch_size, num_boxes, num_classes] float32 one-hot tensor of
        classes.
      labels[fields.InputDataFields.groundtruth_weights] is a
        [batch_size, num_boxes] float32 tensor containing groundtruth weights
        for the boxes.
      -- Optional --
      labels[fields.InputDataFields.groundtruth_instance_masks] is a
        [batch_size, num_boxes, H, W] float32 tensor containing only binary
        values, which represent instance masks for objects.
      labels[fields.InputDataFields.groundtruth_keypoints] is a
        [batch_size, num_boxes, num_keypoints, 2] float32 tensor containing
        keypoints for each box.

  Raises:
    TypeError: if the `train_config`, `train_input_config` or `model_config`
      are not of the correct type.
  """
  if not isinstance(train_config, train_pb2.TrainConfig):
    raise TypeError('For training mode, the `train_config` must be a '
                    'train_pb2.TrainConfig.')
  if not isinstance(train_input_config, input_reader_pb2.InputReader):
    raise TypeError('The `train_input_config` must be a '
                    'input_reader_pb2.InputReader.')
  if not isinstance(model_config, model_pb2.DetectionModel):
    raise TypeError('The `model_config` must be a '
                    'model_pb2.DetectionModel.')

  if model is None:
    model_preprocess_fn = INPUT_BUILDER_UTIL_MAP['model_build'](
        model_config, is_training=True).preprocess
  else:
    model_preprocess_fn = model.preprocess

  def transform_and_pad_input_data_fn(tensor_dict):
    """Combines transform and pad operation."""
    data_augmentation_options = [
        preprocessor_builder.build(step)
        for step in train_config.data_augmentation_options
    ]
    data_augmentation_fn = functools.partial(
        augment_input_data,
        data_augmentation_options=data_augmentation_options)

    image_resizer_config = config_util.get_image_resizer_config(model_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)
    transform_data_fn = functools.partial(
        transform_input_data, model_preprocess_fn=model_preprocess_fn,
        image_resizer_fn=image_resizer_fn,
        num_classes=config_util.get_number_of_classes(model_config),
        data_augmentation_fn=data_augmentation_fn,
        merge_multiple_boxes=train_config.merge_multiple_label_boxes,
        retain_original_image=train_config.retain_original_images,
        use_multiclass_scores=train_config.use_multiclass_scores,
        use_bfloat16=train_config.use_bfloat16)

    tensor_dict = pad_input_data_to_static_shapes(
        tensor_dict=transform_data_fn(tensor_dict),
        max_num_boxes=train_input_config.max_number_of_boxes,
        num_classes=config_util.get_number_of_classes(model_config),
        spatial_image_shape=config_util.get_spatial_image_size(
            image_resizer_config))
    return (_get_features_dict(tensor_dict), _get_labels_dict(tensor_dict))

  dataset = INPUT_BUILDER_UTIL_MAP['dataset_build'](
      train_input_config,
      transform_input_data_fn=transform_and_pad_input_data_fn,
      batch_size=params['batch_size'] if params else train_config.batch_size)
  return dataset
551
552


553
def create_eval_input_fn(eval_config, eval_input_config, model_config):
554
555
556
557
558
  """Creates an eval `input` function for `Estimator`.

  Args:
    eval_config: An eval_pb2.EvalConfig.
    eval_input_config: An input_reader_pb2.InputReader.
559
    model_config: A model_pb2.DetectionModel.
560
561
562
563
564

  Returns:
    `input_fn` for `Estimator` in EVAL mode.
  """

565
  def _eval_input_fn(params=None):
566
567
    return eval_input(eval_config, eval_input_config, model_config,
                      params=params)
568

569
  return _eval_input_fn
570

571

572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
def eval_input(eval_config, eval_input_config, model_config,
               model=None, params=None):
  """Returns `features` and `labels` tensor dictionaries for evaluation.

  Args:
    eval_config: An eval_pb2.EvalConfig.
    eval_input_config: An input_reader_pb2.InputReader.
    model_config: A model_pb2.DetectionModel.
    model: A pre-constructed Detection Model.
      If None, one will be created from the config.
    params: Parameter dictionary passed from the estimator.

  Returns:
    A tf.data.Dataset that holds (features, labels) tuple.

    features: Dictionary of feature tensors.
      features[fields.InputDataFields.image] is a [1, H, W, C] float32 tensor
        with preprocessed images.
      features[HASH_KEY] is a [1] int32 tensor representing unique
        identifiers for the images.
      features[fields.InputDataFields.true_image_shape] is a [1, 3]
        int32 tensor representing the true image shapes, as preprocessed
        images could be padded.
      features[fields.InputDataFields.original_image] is a [1, H', W', C]
        float32 tensor with the original image.
    labels: Dictionary of groundtruth tensors.
      labels[fields.InputDataFields.groundtruth_boxes] is a [1, num_boxes, 4]
        float32 tensor containing the corners of the groundtruth boxes.
      labels[fields.InputDataFields.groundtruth_classes] is a
        [num_boxes, num_classes] float32 one-hot tensor of classes.
      labels[fields.InputDataFields.groundtruth_area] is a [1, num_boxes]
        float32 tensor containing object areas.
      labels[fields.InputDataFields.groundtruth_is_crowd] is a [1, num_boxes]
        bool tensor indicating if the boxes enclose a crowd.
      labels[fields.InputDataFields.groundtruth_difficult] is a [1, num_boxes]
        int32 tensor indicating if the boxes represent difficult instances.
      -- Optional --
      labels[fields.InputDataFields.groundtruth_instance_masks] is a
        [1, num_boxes, H, W] float32 tensor containing only binary values,
        which represent instance masks for objects.

  Raises:
    TypeError: if the `eval_config`, `eval_input_config` or `model_config`
      are not of the correct type.
  """
  params = params or {}
  if not isinstance(eval_config, eval_pb2.EvalConfig):
    raise TypeError('For eval mode, the `eval_config` must be a '
                    'train_pb2.EvalConfig.')
  if not isinstance(eval_input_config, input_reader_pb2.InputReader):
    raise TypeError('The `eval_input_config` must be a '
                    'input_reader_pb2.InputReader.')
  if not isinstance(model_config, model_pb2.DetectionModel):
    raise TypeError('The `model_config` must be a '
                    'model_pb2.DetectionModel.')

  if model is None:
    model_preprocess_fn = INPUT_BUILDER_UTIL_MAP['model_build'](
        model_config, is_training=False).preprocess
  else:
    model_preprocess_fn = model.preprocess

  def transform_and_pad_input_data_fn(tensor_dict):
    """Combines transform and pad operation."""
    num_classes = config_util.get_number_of_classes(model_config)

    image_resizer_config = config_util.get_image_resizer_config(model_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)

    transform_data_fn = functools.partial(
        transform_input_data, model_preprocess_fn=model_preprocess_fn,
        image_resizer_fn=image_resizer_fn,
        num_classes=num_classes,
        data_augmentation_fn=None,
        retain_original_image=eval_config.retain_original_images)
    tensor_dict = pad_input_data_to_static_shapes(
        tensor_dict=transform_data_fn(tensor_dict),
        max_num_boxes=eval_input_config.max_number_of_boxes,
        num_classes=config_util.get_number_of_classes(model_config),
        spatial_image_shape=config_util.get_spatial_image_size(
            image_resizer_config))
    return (_get_features_dict(tensor_dict), _get_labels_dict(tensor_dict))
  dataset = INPUT_BUILDER_UTIL_MAP['dataset_build'](
      eval_input_config,
      batch_size=params['batch_size'] if params else eval_config.batch_size,
      transform_input_data_fn=transform_and_pad_input_data_fn)
  return dataset
659
660


661
def create_predict_input_fn(model_config, predict_input_config):
662
663
  """Creates a predict `input` function for `Estimator`.

664
665
  Args:
    model_config: A model_pb2.DetectionModel.
666
    predict_input_config: An input_reader_pb2.InputReader.
667

668
669
670
671
  Returns:
    `input_fn` for `Estimator` in PREDICT mode.
  """

672
  def _predict_input_fn(params=None):
673
674
    """Decodes serialized tf.Examples and returns `ServingInputReceiver`.

675
676
677
    Args:
      params: Parameter dictionary passed from the estimator.

678
679
680
    Returns:
      `ServingInputReceiver`.
    """
681
    del params
682
    example = tf.placeholder(dtype=tf.string, shape=[], name='tf_example')
683

684
    num_classes = config_util.get_number_of_classes(model_config)
685
686
687
    model_preprocess_fn = INPUT_BUILDER_UTIL_MAP['model_build'](
        model_config, is_training=False).preprocess

688
689
    image_resizer_config = config_util.get_image_resizer_config(model_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)
690

691
    transform_fn = functools.partial(
692
        transform_input_data, model_preprocess_fn=model_preprocess_fn,
693
694
695
696
        image_resizer_fn=image_resizer_fn,
        num_classes=num_classes,
        data_augmentation_fn=None)

697
698
699
    decoder = tf_example_decoder.TfExampleDecoder(
        load_instance_masks=False,
        num_additional_channels=predict_input_config.num_additional_channels)
700
    input_dict = transform_fn(decoder.decode(example))
701
    images = tf.cast(input_dict[fields.InputDataFields.image], dtype=tf.float32)
702
    images = tf.expand_dims(images, axis=0)
703
704
    true_image_shape = tf.expand_dims(
        input_dict[fields.InputDataFields.true_image_shape], axis=0)
705
706

    return tf.estimator.export.ServingInputReceiver(
707
708
709
        features={
            fields.InputDataFields.image: images,
            fields.InputDataFields.true_image_shape: true_image_shape},
710
711
712
        receiver_tensors={SERVING_FED_EXAMPLE_KEY: example})

  return _predict_input_fn