exporter_test.py 49.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Tests for object_detection.export_inference_graph."""
import os
import numpy as np
19
import six
20
import tensorflow as tf
21
from google.protobuf import text_format
22
23
from tensorflow.python.framework import dtypes
from tensorflow.python.ops import array_ops
24
from object_detection import exporter
25
from object_detection.builders import graph_rewriter_builder
26
27
from object_detection.builders import model_builder
from object_detection.core import model
28
from object_detection.protos import graph_rewriter_pb2
29
from object_detection.protos import pipeline_pb2
30
from object_detection.utils import ops
31

32
33
34
35
36
if six.PY2:
  import mock  # pylint: disable=g-import-not-at-top
else:
  from unittest import mock  # pylint: disable=g-import-not-at-top

Vivek Rathod's avatar
Vivek Rathod committed
37
38
slim = tf.contrib.slim

39
40
41

class FakeModel(model.DetectionModel):

42
43
  def __init__(self, add_detection_keypoints=False, add_detection_masks=False):
    self._add_detection_keypoints = add_detection_keypoints
44
45
    self._add_detection_masks = add_detection_masks

46
  def preprocess(self, inputs):
47
48
    true_image_shapes = []  # Doesn't matter for the fake model.
    return tf.identity(inputs), true_image_shapes
49

50
  def predict(self, preprocessed_inputs, true_image_shapes):
51
    return {'image': tf.layers.conv2d(preprocessed_inputs, 3, 1)}
52

53
  def postprocess(self, prediction_dict, true_image_shapes):
54
    with tf.control_dependencies(prediction_dict.values()):
55
      postprocessed_tensors = {
56
57
58
59
60
61
          'detection_boxes': tf.constant([[[0.0, 0.0, 0.5, 0.5],
                                           [0.5, 0.5, 0.8, 0.8]],
                                          [[0.5, 0.5, 1.0, 1.0],
                                           [0.0, 0.0, 0.0, 0.0]]], tf.float32),
          'detection_scores': tf.constant([[0.7, 0.6],
                                           [0.9, 0.0]], tf.float32),
62
63
64
          'detection_multiclass_scores': tf.constant([[[0.3, 0.7], [0.4, 0.6]],
                                                      [[0.1, 0.9], [0.0, 0.0]]],
                                                     tf.float32),
65
66
          'detection_classes': tf.constant([[0, 1],
                                            [1, 0]], tf.float32),
67
68
69
70
71
72
73
74
          'num_detections': tf.constant([2, 1], tf.float32),
          'raw_detection_boxes': tf.constant([[[0.0, 0.0, 0.5, 0.5],
                                               [0.5, 0.5, 0.8, 0.8]],
                                              [[0.5, 0.5, 1.0, 1.0],
                                               [0.0, 0.5, 0.0, 0.5]]],
                                             tf.float32),
          'raw_detection_scores': tf.constant([[0.7, 0.6],
                                               [0.9, 0.5]], tf.float32),
75
      }
76
77
78
      if self._add_detection_keypoints:
        postprocessed_tensors['detection_keypoints'] = tf.constant(
            np.arange(48).reshape([2, 2, 6, 2]), tf.float32)
79
80
      if self._add_detection_masks:
        postprocessed_tensors['detection_masks'] = tf.constant(
81
            np.arange(64).reshape([2, 2, 4, 4]), tf.float32)
82
    return postprocessed_tensors
83

84
  def restore_map(self, checkpoint_path, fine_tune_checkpoint_type):
85
86
    pass

87
  def loss(self, prediction_dict, true_image_shapes):
88
89
    pass

90
91
92
93
94
95
  def regularization_losses(self):
    pass

  def updates(self):
    pass

96
97
98

class ExportInferenceGraphTest(tf.test.TestCase):

99
100
101
102
  def _save_checkpoint_from_mock_model(self,
                                       checkpoint_path,
                                       use_moving_averages,
                                       enable_quantization=False):
103
104
    g = tf.Graph()
    with g.as_default():
105
      mock_model = FakeModel()
106
      preprocessed_inputs, true_image_shapes = mock_model.preprocess(
107
          tf.placeholder(tf.float32, shape=[None, None, None, 3]))
108
109
      predictions = mock_model.predict(preprocessed_inputs, true_image_shapes)
      mock_model.postprocess(predictions, true_image_shapes)
110
111
      if use_moving_averages:
        tf.train.ExponentialMovingAverage(0.0).apply()
112
113
114
115
116
117
118
      tf.train.get_or_create_global_step()
      if enable_quantization:
        graph_rewriter_config = graph_rewriter_pb2.GraphRewriter()
        graph_rewriter_config.quantization.delay = 500000
        graph_rewriter_fn = graph_rewriter_builder.build(
            graph_rewriter_config, is_training=False)
        graph_rewriter_fn()
119
120
121
122
123
124
      saver = tf.train.Saver()
      init = tf.global_variables_initializer()
      with self.test_session() as sess:
        sess.run(init)
        saver.save(sess, checkpoint_path)

125
  def _load_inference_graph(self, inference_graph_path, is_binary=True):
126
127
128
129
    od_graph = tf.Graph()
    with od_graph.as_default():
      od_graph_def = tf.GraphDef()
      with tf.gfile.GFile(inference_graph_path) as fid:
130
131
132
133
        if is_binary:
          od_graph_def.ParseFromString(fid.read())
        else:
          text_format.Parse(fid.read(), od_graph_def)
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
        tf.import_graph_def(od_graph_def, name='')
    return od_graph

  def _create_tf_example(self, image_array):
    with self.test_session():
      encoded_image = tf.image.encode_jpeg(tf.constant(image_array)).eval()
    def _bytes_feature(value):
      return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
    example = tf.train.Example(features=tf.train.Features(feature={
        'image/encoded': _bytes_feature(encoded_image),
        'image/format': _bytes_feature('jpg'),
        'image/source_id': _bytes_feature('image_id')
    })).SerializeToString()
    return example

  def test_export_graph_with_image_tensor_input(self):
150
151
152
153
    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
                                          use_moving_averages=False)
154
155
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
156
      mock_builder.return_value = FakeModel()
157
      output_directory = os.path.join(tmp_dir, 'output')
158
159
160
161
162
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      exporter.export_inference_graph(
          input_type='image_tensor',
          pipeline_config=pipeline_config,
163
164
          trained_checkpoint_prefix=trained_checkpoint_prefix,
          output_directory=output_directory)
Vivek Rathod's avatar
Vivek Rathod committed
165
166
167
      self.assertTrue(os.path.exists(os.path.join(
          output_directory, 'saved_model', 'saved_model.pb')))

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
  def test_write_inference_graph(self):
    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
                                          use_moving_averages=False)
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
      mock_builder.return_value = FakeModel()
      output_directory = os.path.join(tmp_dir, 'output')
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      exporter.export_inference_graph(
          input_type='image_tensor',
          pipeline_config=pipeline_config,
          trained_checkpoint_prefix=trained_checkpoint_prefix,
          output_directory=output_directory,
          write_inference_graph=True)
      self.assertTrue(os.path.exists(os.path.join(
          output_directory, 'inference_graph.pbtxt')))

Vivek Rathod's avatar
Vivek Rathod committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
  def test_export_graph_with_fixed_size_image_tensor_input(self):
    input_shape = [1, 320, 320, 3]

    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    self._save_checkpoint_from_mock_model(
        trained_checkpoint_prefix, use_moving_averages=False)
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
      mock_builder.return_value = FakeModel()
      output_directory = os.path.join(tmp_dir, 'output')
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      exporter.export_inference_graph(
          input_type='image_tensor',
          pipeline_config=pipeline_config,
          trained_checkpoint_prefix=trained_checkpoint_prefix,
          output_directory=output_directory,
          input_shape=input_shape)
      saved_model_path = os.path.join(output_directory, 'saved_model')
      self.assertTrue(
          os.path.exists(os.path.join(saved_model_path, 'saved_model.pb')))

    with tf.Graph().as_default() as od_graph:
      with self.test_session(graph=od_graph) as sess:
        meta_graph = tf.saved_model.loader.load(
            sess, [tf.saved_model.tag_constants.SERVING], saved_model_path)
        signature = meta_graph.signature_def['serving_default']
        input_tensor_name = signature.inputs['inputs'].name
        image_tensor = od_graph.get_tensor_by_name(input_tensor_name)
        self.assertSequenceEqual(image_tensor.get_shape().as_list(),
                                 input_shape)
220
221

  def test_export_graph_with_tf_example_input(self):
222
223
224
225
    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
                                          use_moving_averages=False)
226
227
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
228
      mock_builder.return_value = FakeModel()
229
      output_directory = os.path.join(tmp_dir, 'output')
230
231
232
233
234
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      exporter.export_inference_graph(
          input_type='tf_example',
          pipeline_config=pipeline_config,
235
236
          trained_checkpoint_prefix=trained_checkpoint_prefix,
          output_directory=output_directory)
Vivek Rathod's avatar
Vivek Rathod committed
237
238
      self.assertTrue(os.path.exists(os.path.join(
          output_directory, 'saved_model', 'saved_model.pb')))
239

240
  def test_export_graph_with_encoded_image_string_input(self):
241
242
243
    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
244
245
246
                                          use_moving_averages=False)
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
247
      mock_builder.return_value = FakeModel()
248
      output_directory = os.path.join(tmp_dir, 'output')
249
250
251
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      exporter.export_inference_graph(
252
          input_type='encoded_image_string_tensor',
253
          pipeline_config=pipeline_config,
254
255
          trained_checkpoint_prefix=trained_checkpoint_prefix,
          output_directory=output_directory)
Vivek Rathod's avatar
Vivek Rathod committed
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
      self.assertTrue(os.path.exists(os.path.join(
          output_directory, 'saved_model', 'saved_model.pb')))

  def _get_variables_in_checkpoint(self, checkpoint_file):
    return set([
        var_name
        for var_name, _ in tf.train.list_variables(checkpoint_file)])

  def test_replace_variable_values_with_moving_averages(self):
    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    new_checkpoint_prefix = os.path.join(tmp_dir, 'new.ckpt')
    self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
                                          use_moving_averages=True)
    graph = tf.Graph()
    with graph.as_default():
      fake_model = FakeModel()
273
      preprocessed_inputs, true_image_shapes = fake_model.preprocess(
Vivek Rathod's avatar
Vivek Rathod committed
274
          tf.placeholder(dtype=tf.float32, shape=[None, None, None, 3]))
275
276
      predictions = fake_model.predict(preprocessed_inputs, true_image_shapes)
      fake_model.postprocess(predictions, true_image_shapes)
Vivek Rathod's avatar
Vivek Rathod committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
      exporter.replace_variable_values_with_moving_averages(
          graph, trained_checkpoint_prefix, new_checkpoint_prefix)

    expected_variables = set(['conv2d/bias', 'conv2d/kernel'])
    variables_in_old_ckpt = self._get_variables_in_checkpoint(
        trained_checkpoint_prefix)
    self.assertIn('conv2d/bias/ExponentialMovingAverage',
                  variables_in_old_ckpt)
    self.assertIn('conv2d/kernel/ExponentialMovingAverage',
                  variables_in_old_ckpt)
    variables_in_new_ckpt = self._get_variables_in_checkpoint(
        new_checkpoint_prefix)
    self.assertTrue(expected_variables.issubset(variables_in_new_ckpt))
    self.assertNotIn('conv2d/bias/ExponentialMovingAverage',
                     variables_in_new_ckpt)
    self.assertNotIn('conv2d/kernel/ExponentialMovingAverage',
                     variables_in_new_ckpt)
294

295
296
297
298
  def test_export_graph_with_moving_averages(self):
    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
299
                                          use_moving_averages=True)
300
    output_directory = os.path.join(tmp_dir, 'output')
301
302
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
303
      mock_builder.return_value = FakeModel()
304
305
306
307
308
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = True
      exporter.export_inference_graph(
          input_type='image_tensor',
          pipeline_config=pipeline_config,
309
310
          trained_checkpoint_prefix=trained_checkpoint_prefix,
          output_directory=output_directory)
Vivek Rathod's avatar
Vivek Rathod committed
311
312
313
314
315
316
      self.assertTrue(os.path.exists(os.path.join(
          output_directory, 'saved_model', 'saved_model.pb')))
    expected_variables = set(['conv2d/bias', 'conv2d/kernel', 'global_step'])
    actual_variables = set(
        [var_name for var_name, _ in tf.train.list_variables(output_directory)])
    self.assertTrue(expected_variables.issubset(actual_variables))
317

318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
  def test_export_model_with_quantization_nodes(self):
    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    self._save_checkpoint_from_mock_model(
        trained_checkpoint_prefix,
        use_moving_averages=False,
        enable_quantization=True)
    output_directory = os.path.join(tmp_dir, 'output')
    inference_graph_path = os.path.join(output_directory,
                                        'inference_graph.pbtxt')
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
      mock_builder.return_value = FakeModel()
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      text_format.Merge(
          """graph_rewriter {
               quantization {
                 delay: 50000
                 activation_bits: 8
                 weight_bits: 8
               }
             }""", pipeline_config)
      exporter.export_inference_graph(
          input_type='image_tensor',
          pipeline_config=pipeline_config,
          trained_checkpoint_prefix=trained_checkpoint_prefix,
          output_directory=output_directory,
          write_inference_graph=True)
    self._load_inference_graph(inference_graph_path, is_binary=False)
    has_quant_nodes = False
    for v in tf.global_variables():
      if v.op.name.endswith('act_quant/min'):
        has_quant_nodes = True
        break
    self.assertTrue(has_quant_nodes)

354
  def test_export_model_with_all_output_nodes(self):
355
356
357
358
359
360
361
    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
                                          use_moving_averages=True)
    output_directory = os.path.join(tmp_dir, 'output')
    inference_graph_path = os.path.join(output_directory,
                                        'frozen_inference_graph.pb')
362
363
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
364
365
      mock_builder.return_value = FakeModel(
          add_detection_keypoints=True, add_detection_masks=True)
366
367
368
369
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      exporter.export_inference_graph(
          input_type='image_tensor',
          pipeline_config=pipeline_config,
370
371
          trained_checkpoint_prefix=trained_checkpoint_prefix,
          output_directory=output_directory)
372
373
374
375
376
    inference_graph = self._load_inference_graph(inference_graph_path)
    with self.test_session(graph=inference_graph):
      inference_graph.get_tensor_by_name('image_tensor:0')
      inference_graph.get_tensor_by_name('detection_boxes:0')
      inference_graph.get_tensor_by_name('detection_scores:0')
377
      inference_graph.get_tensor_by_name('detection_multiclass_scores:0')
378
      inference_graph.get_tensor_by_name('detection_classes:0')
379
      inference_graph.get_tensor_by_name('detection_keypoints:0')
380
381
382
383
      inference_graph.get_tensor_by_name('detection_masks:0')
      inference_graph.get_tensor_by_name('num_detections:0')

  def test_export_model_with_detection_only_nodes(self):
384
385
386
387
388
389
390
    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
                                          use_moving_averages=True)
    output_directory = os.path.join(tmp_dir, 'output')
    inference_graph_path = os.path.join(output_directory,
                                        'frozen_inference_graph.pb')
391
392
393
394
395
396
397
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
      mock_builder.return_value = FakeModel(add_detection_masks=False)
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      exporter.export_inference_graph(
          input_type='image_tensor',
          pipeline_config=pipeline_config,
398
399
          trained_checkpoint_prefix=trained_checkpoint_prefix,
          output_directory=output_directory)
400
401
402
403
404
    inference_graph = self._load_inference_graph(inference_graph_path)
    with self.test_session(graph=inference_graph):
      inference_graph.get_tensor_by_name('image_tensor:0')
      inference_graph.get_tensor_by_name('detection_boxes:0')
      inference_graph.get_tensor_by_name('detection_scores:0')
405
      inference_graph.get_tensor_by_name('detection_multiclass_scores:0')
406
407
408
      inference_graph.get_tensor_by_name('detection_classes:0')
      inference_graph.get_tensor_by_name('num_detections:0')
      with self.assertRaises(KeyError):
409
        inference_graph.get_tensor_by_name('detection_keypoints:0')
410
411
        inference_graph.get_tensor_by_name('detection_masks:0')

412
  def test_export_and_run_inference_with_image_tensor(self):
413
414
415
416
417
418
419
    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
                                          use_moving_averages=True)
    output_directory = os.path.join(tmp_dir, 'output')
    inference_graph_path = os.path.join(output_directory,
                                        'frozen_inference_graph.pb')
420
421
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
422
423
      mock_builder.return_value = FakeModel(
          add_detection_keypoints=True, add_detection_masks=True)
424
425
426
427
428
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      exporter.export_inference_graph(
          input_type='image_tensor',
          pipeline_config=pipeline_config,
429
430
          trained_checkpoint_prefix=trained_checkpoint_prefix,
          output_directory=output_directory)
431
432
433
434
435
436
437

    inference_graph = self._load_inference_graph(inference_graph_path)
    with self.test_session(graph=inference_graph) as sess:
      image_tensor = inference_graph.get_tensor_by_name('image_tensor:0')
      boxes = inference_graph.get_tensor_by_name('detection_boxes:0')
      scores = inference_graph.get_tensor_by_name('detection_scores:0')
      classes = inference_graph.get_tensor_by_name('detection_classes:0')
438
      keypoints = inference_graph.get_tensor_by_name('detection_keypoints:0')
439
      masks = inference_graph.get_tensor_by_name('detection_masks:0')
440
      num_detections = inference_graph.get_tensor_by_name('num_detections:0')
441
442
443
444
      (boxes_np, scores_np, classes_np, keypoints_np, masks_np,
       num_detections_np) = sess.run(
           [boxes, scores, classes, keypoints, masks, num_detections],
           feed_dict={image_tensor: np.ones((2, 4, 4, 3)).astype(np.uint8)})
445
446
447
448
449
450
451
452
      self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
                                      [0.5, 0.5, 0.8, 0.8]],
                                     [[0.5, 0.5, 1.0, 1.0],
                                      [0.0, 0.0, 0.0, 0.0]]])
      self.assertAllClose(scores_np, [[0.7, 0.6],
                                      [0.9, 0.0]])
      self.assertAllClose(classes_np, [[1, 2],
                                       [2, 1]])
453
      self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2]))
454
455
      self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4]))
      self.assertAllClose(num_detections_np, [2, 1])
456

457
458
459
460
461
462
463
464
465
466
467
468
469
  def _create_encoded_image_string(self, image_array_np, encoding_format):
    od_graph = tf.Graph()
    with od_graph.as_default():
      if encoding_format == 'jpg':
        encoded_string = tf.image.encode_jpeg(image_array_np)
      elif encoding_format == 'png':
        encoded_string = tf.image.encode_png(image_array_np)
      else:
        raise ValueError('Supports only the following formats: `jpg`, `png`')
    with self.test_session(graph=od_graph):
      return encoded_string.eval()

  def test_export_and_run_inference_with_encoded_image_string_tensor(self):
470
471
472
473
474
475
476
    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
                                          use_moving_averages=True)
    output_directory = os.path.join(tmp_dir, 'output')
    inference_graph_path = os.path.join(output_directory,
                                        'frozen_inference_graph.pb')
477
478
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
479
480
      mock_builder.return_value = FakeModel(
          add_detection_keypoints=True, add_detection_masks=True)
481
482
483
484
485
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      exporter.export_inference_graph(
          input_type='encoded_image_string_tensor',
          pipeline_config=pipeline_config,
486
487
          trained_checkpoint_prefix=trained_checkpoint_prefix,
          output_directory=output_directory)
488
489
490
491
492
493
494
495
496
497
498

    inference_graph = self._load_inference_graph(inference_graph_path)
    jpg_image_str = self._create_encoded_image_string(
        np.ones((4, 4, 3)).astype(np.uint8), 'jpg')
    png_image_str = self._create_encoded_image_string(
        np.ones((4, 4, 3)).astype(np.uint8), 'png')
    with self.test_session(graph=inference_graph) as sess:
      image_str_tensor = inference_graph.get_tensor_by_name(
          'encoded_image_string_tensor:0')
      boxes = inference_graph.get_tensor_by_name('detection_boxes:0')
      scores = inference_graph.get_tensor_by_name('detection_scores:0')
499
500
      multiclass_scores = inference_graph.get_tensor_by_name(
          'detection_multiclass_scores:0')
501
      classes = inference_graph.get_tensor_by_name('detection_classes:0')
502
      keypoints = inference_graph.get_tensor_by_name('detection_keypoints:0')
503
504
505
      masks = inference_graph.get_tensor_by_name('detection_masks:0')
      num_detections = inference_graph.get_tensor_by_name('num_detections:0')
      for image_str in [jpg_image_str, png_image_str]:
506
        image_str_batch_np = np.hstack([image_str]* 2)
507
508
509
510
511
512
        (boxes_np, scores_np, multiclass_scores_np, classes_np, keypoints_np,
         masks_np, num_detections_np) = sess.run(
             [
                 boxes, scores, multiclass_scores, classes, keypoints, masks,
                 num_detections
             ],
513
514
515
516
517
518
519
             feed_dict={image_str_tensor: image_str_batch_np})
        self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
                                        [0.5, 0.5, 0.8, 0.8]],
                                       [[0.5, 0.5, 1.0, 1.0],
                                        [0.0, 0.0, 0.0, 0.0]]])
        self.assertAllClose(scores_np, [[0.7, 0.6],
                                        [0.9, 0.0]])
520
521
        self.assertAllClose(multiclass_scores_np, [[[0.3, 0.7], [0.4, 0.6]],
                                                   [[0.1, 0.9], [0.0, 0.0]]])
522
523
        self.assertAllClose(classes_np, [[1, 2],
                                         [2, 1]])
524
        self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2]))
525
526
527
528
529
530
531
532
533
534
535
536
537
        self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4]))
        self.assertAllClose(num_detections_np, [2, 1])

  def test_raise_runtime_error_on_images_with_different_sizes(self):
    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
                                          use_moving_averages=True)
    output_directory = os.path.join(tmp_dir, 'output')
    inference_graph_path = os.path.join(output_directory,
                                        'frozen_inference_graph.pb')
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
538
539
      mock_builder.return_value = FakeModel(
          add_detection_keypoints=True, add_detection_masks=True)
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      exporter.export_inference_graph(
          input_type='encoded_image_string_tensor',
          pipeline_config=pipeline_config,
          trained_checkpoint_prefix=trained_checkpoint_prefix,
          output_directory=output_directory)

    inference_graph = self._load_inference_graph(inference_graph_path)
    large_image = self._create_encoded_image_string(
        np.ones((4, 4, 3)).astype(np.uint8), 'jpg')
    small_image = self._create_encoded_image_string(
        np.ones((2, 2, 3)).astype(np.uint8), 'jpg')

    image_str_batch_np = np.hstack([large_image, small_image])
    with self.test_session(graph=inference_graph) as sess:
      image_str_tensor = inference_graph.get_tensor_by_name(
          'encoded_image_string_tensor:0')
      boxes = inference_graph.get_tensor_by_name('detection_boxes:0')
      scores = inference_graph.get_tensor_by_name('detection_scores:0')
      classes = inference_graph.get_tensor_by_name('detection_classes:0')
561
      keypoints = inference_graph.get_tensor_by_name('detection_keypoints:0')
562
563
564
      masks = inference_graph.get_tensor_by_name('detection_masks:0')
      num_detections = inference_graph.get_tensor_by_name('num_detections:0')
      with self.assertRaisesRegexp(tf.errors.InvalidArgumentError,
565
                                   'TensorArray.*shape'):
566
567
568
        sess.run(
            [boxes, scores, classes, keypoints, masks, num_detections],
            feed_dict={image_str_tensor: image_str_batch_np})
569

570
  def test_export_and_run_inference_with_tf_example(self):
571
572
573
574
575
576
577
    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
                                          use_moving_averages=True)
    output_directory = os.path.join(tmp_dir, 'output')
    inference_graph_path = os.path.join(output_directory,
                                        'frozen_inference_graph.pb')
578
579
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
580
581
      mock_builder.return_value = FakeModel(
          add_detection_keypoints=True, add_detection_masks=True)
582
583
584
585
586
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      exporter.export_inference_graph(
          input_type='tf_example',
          pipeline_config=pipeline_config,
587
588
          trained_checkpoint_prefix=trained_checkpoint_prefix,
          output_directory=output_directory)
589
590

    inference_graph = self._load_inference_graph(inference_graph_path)
591
592
    tf_example_np = np.expand_dims(self._create_tf_example(
        np.ones((4, 4, 3)).astype(np.uint8)), axis=0)
593
594
595
596
597
    with self.test_session(graph=inference_graph) as sess:
      tf_example = inference_graph.get_tensor_by_name('tf_example:0')
      boxes = inference_graph.get_tensor_by_name('detection_boxes:0')
      scores = inference_graph.get_tensor_by_name('detection_scores:0')
      classes = inference_graph.get_tensor_by_name('detection_classes:0')
598
      keypoints = inference_graph.get_tensor_by_name('detection_keypoints:0')
599
      masks = inference_graph.get_tensor_by_name('detection_masks:0')
600
      num_detections = inference_graph.get_tensor_by_name('num_detections:0')
601
602
603
604
      (boxes_np, scores_np, classes_np, keypoints_np, masks_np,
       num_detections_np) = sess.run(
           [boxes, scores, classes, keypoints, masks, num_detections],
           feed_dict={tf_example: tf_example_np})
605
606
607
608
609
610
611
612
      self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
                                      [0.5, 0.5, 0.8, 0.8]],
                                     [[0.5, 0.5, 1.0, 1.0],
                                      [0.0, 0.0, 0.0, 0.0]]])
      self.assertAllClose(scores_np, [[0.7, 0.6],
                                      [0.9, 0.0]])
      self.assertAllClose(classes_np, [[1, 2],
                                       [2, 1]])
613
      self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2]))
614
615
      self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4]))
      self.assertAllClose(num_detections_np, [2, 1])
616

617
618
619
620
621
622
623
624
625
626
627
  def test_write_frozen_graph(self):
    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
                                          use_moving_averages=True)
    output_directory = os.path.join(tmp_dir, 'output')
    inference_graph_path = os.path.join(output_directory,
                                        'frozen_inference_graph.pb')
    tf.gfile.MakeDirs(output_directory)
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
628
629
      mock_builder.return_value = FakeModel(
          add_detection_keypoints=True, add_detection_masks=True)
630
631
632
633
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      detection_model = model_builder.build(pipeline_config.model,
                                            is_training=False)
634
      outputs, _ = exporter.build_detection_graph(
635
636
637
638
639
640
641
642
          input_type='tf_example',
          detection_model=detection_model,
          input_shape=None,
          output_collection_name='inference_op',
          graph_hook_fn=None)
      output_node_names = ','.join(outputs.keys())
      saver = tf.train.Saver()
      input_saver_def = saver.as_saver_def()
643
      exporter.freeze_graph_with_def_protos(
644
645
646
647
648
649
          input_graph_def=tf.get_default_graph().as_graph_def(),
          input_saver_def=input_saver_def,
          input_checkpoint=trained_checkpoint_prefix,
          output_node_names=output_node_names,
          restore_op_name='save/restore_all',
          filename_tensor_name='save/Const:0',
650
          output_graph=inference_graph_path,
651
652
653
654
655
656
657
658
659
660
661
          clear_devices=True,
          initializer_nodes='')

    inference_graph = self._load_inference_graph(inference_graph_path)
    tf_example_np = np.expand_dims(self._create_tf_example(
        np.ones((4, 4, 3)).astype(np.uint8)), axis=0)
    with self.test_session(graph=inference_graph) as sess:
      tf_example = inference_graph.get_tensor_by_name('tf_example:0')
      boxes = inference_graph.get_tensor_by_name('detection_boxes:0')
      scores = inference_graph.get_tensor_by_name('detection_scores:0')
      classes = inference_graph.get_tensor_by_name('detection_classes:0')
662
      keypoints = inference_graph.get_tensor_by_name('detection_keypoints:0')
663
664
      masks = inference_graph.get_tensor_by_name('detection_masks:0')
      num_detections = inference_graph.get_tensor_by_name('num_detections:0')
665
666
667
668
      (boxes_np, scores_np, classes_np, keypoints_np, masks_np,
       num_detections_np) = sess.run(
           [boxes, scores, classes, keypoints, masks, num_detections],
           feed_dict={tf_example: tf_example_np})
669
670
671
672
673
674
675
676
      self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
                                      [0.5, 0.5, 0.8, 0.8]],
                                     [[0.5, 0.5, 1.0, 1.0],
                                      [0.0, 0.0, 0.0, 0.0]]])
      self.assertAllClose(scores_np, [[0.7, 0.6],
                                      [0.9, 0.0]])
      self.assertAllClose(classes_np, [[1, 2],
                                       [2, 1]])
677
      self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2]))
678
679
680
      self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4]))
      self.assertAllClose(num_detections_np, [2, 1])

681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
  def test_export_graph_saves_pipeline_file(self):
    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
                                          use_moving_averages=True)
    output_directory = os.path.join(tmp_dir, 'output')
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
      mock_builder.return_value = FakeModel()
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      exporter.export_inference_graph(
          input_type='image_tensor',
          pipeline_config=pipeline_config,
          trained_checkpoint_prefix=trained_checkpoint_prefix,
          output_directory=output_directory)
      expected_pipeline_path = os.path.join(
          output_directory, 'pipeline.config')
      self.assertTrue(os.path.exists(expected_pipeline_path))

      written_pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      with tf.gfile.GFile(expected_pipeline_path, 'r') as f:
        proto_str = f.read()
        text_format.Merge(proto_str, written_pipeline_config)
        self.assertProtoEquals(pipeline_config, written_pipeline_config)

706
  def test_export_saved_model_and_run_inference(self):
707
708
709
    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
710
                                          use_moving_averages=False)
711
712
    output_directory = os.path.join(tmp_dir, 'output')
    saved_model_path = os.path.join(output_directory, 'saved_model')
713
714
715

    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
716
717
      mock_builder.return_value = FakeModel(
          add_detection_keypoints=True, add_detection_masks=True)
718
719
720
721
722
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      exporter.export_inference_graph(
          input_type='tf_example',
          pipeline_config=pipeline_config,
723
724
          trained_checkpoint_prefix=trained_checkpoint_prefix,
          output_directory=output_directory)
725

726
727
    tf_example_np = np.hstack([self._create_tf_example(
        np.ones((4, 4, 3)).astype(np.uint8))] * 2)
728
729
    with tf.Graph().as_default() as od_graph:
      with self.test_session(graph=od_graph) as sess:
Vivek Rathod's avatar
Vivek Rathod committed
730
        meta_graph = tf.saved_model.loader.load(
731
            sess, [tf.saved_model.tag_constants.SERVING], saved_model_path)
Vivek Rathod's avatar
Vivek Rathod committed
732
733
734
735
736
737
738
739
740
741
742

        signature = meta_graph.signature_def['serving_default']
        input_tensor_name = signature.inputs['inputs'].name
        tf_example = od_graph.get_tensor_by_name(input_tensor_name)

        boxes = od_graph.get_tensor_by_name(
            signature.outputs['detection_boxes'].name)
        scores = od_graph.get_tensor_by_name(
            signature.outputs['detection_scores'].name)
        classes = od_graph.get_tensor_by_name(
            signature.outputs['detection_classes'].name)
743
744
        keypoints = od_graph.get_tensor_by_name(
            signature.outputs['detection_keypoints'].name)
Vivek Rathod's avatar
Vivek Rathod committed
745
746
747
748
749
        masks = od_graph.get_tensor_by_name(
            signature.outputs['detection_masks'].name)
        num_detections = od_graph.get_tensor_by_name(
            signature.outputs['num_detections'].name)

750
        (boxes_np, scores_np, classes_np, keypoints_np, masks_np,
751
         num_detections_np) = sess.run(
752
             [boxes, scores, classes, keypoints, masks, num_detections],
753
754
755
756
757
758
759
760
761
             feed_dict={tf_example: tf_example_np})
        self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
                                        [0.5, 0.5, 0.8, 0.8]],
                                       [[0.5, 0.5, 1.0, 1.0],
                                        [0.0, 0.0, 0.0, 0.0]]])
        self.assertAllClose(scores_np, [[0.7, 0.6],
                                        [0.9, 0.0]])
        self.assertAllClose(classes_np, [[1, 2],
                                         [2, 1]])
762
        self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2]))
763
764
        self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4]))
        self.assertAllClose(num_detections_np, [2, 1])
765

766
767
768
769
770
771
772
773
774
775
  def test_write_saved_model(self):
    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
                                          use_moving_averages=False)
    output_directory = os.path.join(tmp_dir, 'output')
    saved_model_path = os.path.join(output_directory, 'saved_model')
    tf.gfile.MakeDirs(output_directory)
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
776
777
      mock_builder.return_value = FakeModel(
          add_detection_keypoints=True, add_detection_masks=True)
778
779
780
781
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      detection_model = model_builder.build(pipeline_config.model,
                                            is_training=False)
782
      outputs, placeholder_tensor = exporter.build_detection_graph(
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
          input_type='tf_example',
          detection_model=detection_model,
          input_shape=None,
          output_collection_name='inference_op',
          graph_hook_fn=None)
      output_node_names = ','.join(outputs.keys())
      saver = tf.train.Saver()
      input_saver_def = saver.as_saver_def()
      frozen_graph_def = exporter.freeze_graph_with_def_protos(
          input_graph_def=tf.get_default_graph().as_graph_def(),
          input_saver_def=input_saver_def,
          input_checkpoint=trained_checkpoint_prefix,
          output_node_names=output_node_names,
          restore_op_name='save/restore_all',
          filename_tensor_name='save/Const:0',
798
          output_graph='',
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
          clear_devices=True,
          initializer_nodes='')
      exporter.write_saved_model(
          saved_model_path=saved_model_path,
          frozen_graph_def=frozen_graph_def,
          inputs=placeholder_tensor,
          outputs=outputs)

    tf_example_np = np.hstack([self._create_tf_example(
        np.ones((4, 4, 3)).astype(np.uint8))] * 2)
    with tf.Graph().as_default() as od_graph:
      with self.test_session(graph=od_graph) as sess:
        meta_graph = tf.saved_model.loader.load(
            sess, [tf.saved_model.tag_constants.SERVING], saved_model_path)

        signature = meta_graph.signature_def['serving_default']
        input_tensor_name = signature.inputs['inputs'].name
        tf_example = od_graph.get_tensor_by_name(input_tensor_name)

        boxes = od_graph.get_tensor_by_name(
            signature.outputs['detection_boxes'].name)
        scores = od_graph.get_tensor_by_name(
            signature.outputs['detection_scores'].name)
        classes = od_graph.get_tensor_by_name(
            signature.outputs['detection_classes'].name)
824
825
        keypoints = od_graph.get_tensor_by_name(
            signature.outputs['detection_keypoints'].name)
826
827
828
829
830
        masks = od_graph.get_tensor_by_name(
            signature.outputs['detection_masks'].name)
        num_detections = od_graph.get_tensor_by_name(
            signature.outputs['num_detections'].name)

831
        (boxes_np, scores_np, classes_np, keypoints_np, masks_np,
832
         num_detections_np) = sess.run(
833
             [boxes, scores, classes, keypoints, masks, num_detections],
834
835
836
837
838
839
840
841
842
             feed_dict={tf_example: tf_example_np})
        self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
                                        [0.5, 0.5, 0.8, 0.8]],
                                       [[0.5, 0.5, 1.0, 1.0],
                                        [0.0, 0.0, 0.0, 0.0]]])
        self.assertAllClose(scores_np, [[0.7, 0.6],
                                        [0.9, 0.0]])
        self.assertAllClose(classes_np, [[1, 2],
                                         [2, 1]])
843
        self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2]))
844
845
846
        self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4]))
        self.assertAllClose(num_detections_np, [2, 1])

847
848
849
850
851
852
853
854
855
856
857
  def test_export_checkpoint_and_run_inference(self):
    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
                                          use_moving_averages=False)
    output_directory = os.path.join(tmp_dir, 'output')
    model_path = os.path.join(output_directory, 'model.ckpt')
    meta_graph_path = model_path + '.meta'

    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
858
859
      mock_builder.return_value = FakeModel(
          add_detection_keypoints=True, add_detection_masks=True)
860
861
862
863
864
865
866
867
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      exporter.export_inference_graph(
          input_type='tf_example',
          pipeline_config=pipeline_config,
          trained_checkpoint_prefix=trained_checkpoint_prefix,
          output_directory=output_directory)

868
869
    tf_example_np = np.hstack([self._create_tf_example(
        np.ones((4, 4, 3)).astype(np.uint8))] * 2)
870
871
872
873
874
875
876
877
878
    with tf.Graph().as_default() as od_graph:
      with self.test_session(graph=od_graph) as sess:
        new_saver = tf.train.import_meta_graph(meta_graph_path)
        new_saver.restore(sess, model_path)

        tf_example = od_graph.get_tensor_by_name('tf_example:0')
        boxes = od_graph.get_tensor_by_name('detection_boxes:0')
        scores = od_graph.get_tensor_by_name('detection_scores:0')
        classes = od_graph.get_tensor_by_name('detection_classes:0')
879
        keypoints = od_graph.get_tensor_by_name('detection_keypoints:0')
880
881
        masks = od_graph.get_tensor_by_name('detection_masks:0')
        num_detections = od_graph.get_tensor_by_name('num_detections:0')
882
        (boxes_np, scores_np, classes_np, keypoints_np, masks_np,
883
         num_detections_np) = sess.run(
884
             [boxes, scores, classes, keypoints, masks, num_detections],
885
886
887
888
889
890
891
892
893
             feed_dict={tf_example: tf_example_np})
        self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
                                        [0.5, 0.5, 0.8, 0.8]],
                                       [[0.5, 0.5, 1.0, 1.0],
                                        [0.0, 0.0, 0.0, 0.0]]])
        self.assertAllClose(scores_np, [[0.7, 0.6],
                                        [0.9, 0.0]])
        self.assertAllClose(classes_np, [[1, 2],
                                         [2, 1]])
894
        self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2]))
895
896
897
898
899
900
901
902
903
904
905
906
907
908
        self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4]))
        self.assertAllClose(num_detections_np, [2, 1])

  def test_write_graph_and_checkpoint(self):
    tmp_dir = self.get_temp_dir()
    trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
    self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
                                          use_moving_averages=False)
    output_directory = os.path.join(tmp_dir, 'output')
    model_path = os.path.join(output_directory, 'model.ckpt')
    meta_graph_path = model_path + '.meta'
    tf.gfile.MakeDirs(output_directory)
    with mock.patch.object(
        model_builder, 'build', autospec=True) as mock_builder:
909
910
      mock_builder.return_value = FakeModel(
          add_detection_keypoints=True, add_detection_masks=True)
911
912
913
914
      pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
      pipeline_config.eval_config.use_moving_averages = False
      detection_model = model_builder.build(pipeline_config.model,
                                            is_training=False)
915
      exporter.build_detection_graph(
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
          input_type='tf_example',
          detection_model=detection_model,
          input_shape=None,
          output_collection_name='inference_op',
          graph_hook_fn=None)
      saver = tf.train.Saver()
      input_saver_def = saver.as_saver_def()
      exporter.write_graph_and_checkpoint(
          inference_graph_def=tf.get_default_graph().as_graph_def(),
          model_path=model_path,
          input_saver_def=input_saver_def,
          trained_checkpoint_prefix=trained_checkpoint_prefix)

    tf_example_np = np.hstack([self._create_tf_example(
        np.ones((4, 4, 3)).astype(np.uint8))] * 2)
    with tf.Graph().as_default() as od_graph:
      with self.test_session(graph=od_graph) as sess:
        new_saver = tf.train.import_meta_graph(meta_graph_path)
        new_saver.restore(sess, model_path)

        tf_example = od_graph.get_tensor_by_name('tf_example:0')
        boxes = od_graph.get_tensor_by_name('detection_boxes:0')
        scores = od_graph.get_tensor_by_name('detection_scores:0')
939
940
        raw_boxes = od_graph.get_tensor_by_name('raw_detection_boxes:0')
        raw_scores = od_graph.get_tensor_by_name('raw_detection_scores:0')
941
        classes = od_graph.get_tensor_by_name('detection_classes:0')
942
        keypoints = od_graph.get_tensor_by_name('detection_keypoints:0')
943
944
        masks = od_graph.get_tensor_by_name('detection_masks:0')
        num_detections = od_graph.get_tensor_by_name('num_detections:0')
945
946
947
948
        (boxes_np, scores_np, raw_boxes_np, raw_scores_np, classes_np,
         keypoints_np, masks_np, num_detections_np) = sess.run(
             [boxes, scores, raw_boxes, raw_scores, classes, keypoints, masks,
              num_detections],
949
950
951
952
953
954
955
             feed_dict={tf_example: tf_example_np})
        self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
                                        [0.5, 0.5, 0.8, 0.8]],
                                       [[0.5, 0.5, 1.0, 1.0],
                                        [0.0, 0.0, 0.0, 0.0]]])
        self.assertAllClose(scores_np, [[0.7, 0.6],
                                        [0.9, 0.0]])
956
957
958
959
960
961
        self.assertAllClose(raw_boxes_np, [[[0.0, 0.0, 0.5, 0.5],
                                            [0.5, 0.5, 0.8, 0.8]],
                                           [[0.5, 0.5, 1.0, 1.0],
                                            [0.0, 0.5, 0.0, 0.5]]])
        self.assertAllClose(raw_scores_np, [[0.7, 0.6],
                                            [0.9, 0.5]])
962
963
        self.assertAllClose(classes_np, [[1, 2],
                                         [2, 1]])
964
        self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2]))
965
966
        self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4]))
        self.assertAllClose(num_detections_np, [2, 1])
967

968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
  def test_rewrite_nn_resize_op(self):
    g = tf.Graph()
    with g.as_default():
      x = array_ops.placeholder(dtypes.float32, shape=(8, 10, 10, 8))
      y = array_ops.placeholder(dtypes.float32, shape=(8, 20, 20, 8))
      s = ops.nearest_neighbor_upsampling(x, 2)
      t = s + y
      exporter.rewrite_nn_resize_op()

    resize_op_found = False
    for op in g.get_operations():
      if op.type == 'ResizeNearestNeighbor':
        resize_op_found = True
        self.assertEqual(op.inputs[0], x)
        self.assertEqual(op.outputs[0].consumers()[0], t.op)
        break

    self.assertTrue(resize_op_found)

  def test_rewrite_nn_resize_op_quantized(self):
    g = tf.Graph()
    with g.as_default():
      x = array_ops.placeholder(dtypes.float32, shape=(8, 10, 10, 8))
      x_conv = tf.contrib.slim.conv2d(x, 8, 1)
      y = array_ops.placeholder(dtypes.float32, shape=(8, 20, 20, 8))
      s = ops.nearest_neighbor_upsampling(x_conv, 2)
      t = s + y

      graph_rewriter_config = graph_rewriter_pb2.GraphRewriter()
      graph_rewriter_config.quantization.delay = 500000
      graph_rewriter_fn = graph_rewriter_builder.build(
          graph_rewriter_config, is_training=False)
      graph_rewriter_fn()

      exporter.rewrite_nn_resize_op(is_quantized=True)

    resize_op_found = False
    for op in g.get_operations():
      if op.type == 'ResizeNearestNeighbor':
        resize_op_found = True
        self.assertEqual(op.inputs[0].op.type, 'FakeQuantWithMinMaxVars')
        self.assertEqual(op.outputs[0].consumers()[0], t.op)
        break

    self.assertTrue(resize_op_found)

1014

1015
1016
if __name__ == '__main__':
  tf.test.main()