configs.py 5.97 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Configuration utils for image classification experiments."""

import dataclasses

from official.legacy.image_classification import dataset_factory
from official.legacy.image_classification.configs import base_configs
from official.legacy.image_classification.efficientnet import efficientnet_config
from official.legacy.image_classification.resnet import resnet_config
23
from official.legacy.image_classification.vgg import vgg_config
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91


@dataclasses.dataclass
class EfficientNetImageNetConfig(base_configs.ExperimentConfig):
  """Base configuration to train efficientnet-b0 on ImageNet.

  Attributes:
    export: An `ExportConfig` instance
    runtime: A `RuntimeConfig` instance.
    dataset: A `DatasetConfig` instance.
    train: A `TrainConfig` instance.
    evaluation: An `EvalConfig` instance.
    model: A `ModelConfig` instance.
  """
  export: base_configs.ExportConfig = base_configs.ExportConfig()
  runtime: base_configs.RuntimeConfig = base_configs.RuntimeConfig()
  train_dataset: dataset_factory.DatasetConfig = dataset_factory.ImageNetConfig(
      split='train')
  validation_dataset: dataset_factory.DatasetConfig = dataset_factory.ImageNetConfig(
      split='validation')
  train: base_configs.TrainConfig = base_configs.TrainConfig(
      resume_checkpoint=True,
      epochs=500,
      steps=None,
      callbacks=base_configs.CallbacksConfig(
          enable_checkpoint_and_export=True, enable_tensorboard=True),
      metrics=['accuracy', 'top_5'],
      time_history=base_configs.TimeHistoryConfig(log_steps=100),
      tensorboard=base_configs.TensorBoardConfig(
          track_lr=True, write_model_weights=False),
      set_epoch_loop=False)
  evaluation: base_configs.EvalConfig = base_configs.EvalConfig(
      epochs_between_evals=1, steps=None)
  model: base_configs.ModelConfig = efficientnet_config.EfficientNetModelConfig(
  )


@dataclasses.dataclass
class ResNetImagenetConfig(base_configs.ExperimentConfig):
  """Base configuration to train resnet-50 on ImageNet."""
  export: base_configs.ExportConfig = base_configs.ExportConfig()
  runtime: base_configs.RuntimeConfig = base_configs.RuntimeConfig()
  train_dataset: dataset_factory.DatasetConfig = \
      dataset_factory.ImageNetConfig(split='train',
                                     one_hot=False,
                                     mean_subtract=True,
                                     standardize=True)
  validation_dataset: dataset_factory.DatasetConfig = \
      dataset_factory.ImageNetConfig(split='validation',
                                     one_hot=False,
                                     mean_subtract=True,
                                     standardize=True)
  train: base_configs.TrainConfig = base_configs.TrainConfig(
      resume_checkpoint=True,
      epochs=90,
      steps=None,
      callbacks=base_configs.CallbacksConfig(
          enable_checkpoint_and_export=True, enable_tensorboard=True),
      metrics=['accuracy', 'top_5'],
      time_history=base_configs.TimeHistoryConfig(log_steps=100),
      tensorboard=base_configs.TensorBoardConfig(
          track_lr=True, write_model_weights=False),
      set_epoch_loop=False)
  evaluation: base_configs.EvalConfig = base_configs.EvalConfig(
      epochs_between_evals=1, steps=None)
  model: base_configs.ModelConfig = resnet_config.ResNetModelConfig()


miguelCalado's avatar
miguelCalado committed
92
93
94
95
96
@dataclasses.dataclass
class VGGImagenetConfig(base_configs.ExperimentConfig):
  """Base configuration to train vgg-16 on ImageNet."""
  export: base_configs.ExportConfig = base_configs.ExportConfig()
  runtime: base_configs.RuntimeConfig = base_configs.RuntimeConfig()
97
98
99
100
  train_dataset: dataset_factory.DatasetConfig = dataset_factory.ImageNetConfig(
      split='train', one_hot=False, mean_subtract=True, standardize=True)
  validation_dataset: dataset_factory.DatasetConfig = dataset_factory.ImageNetConfig(
      split='validation', one_hot=False, mean_subtract=True, standardize=True)
miguelCalado's avatar
miguelCalado committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
  train: base_configs.TrainConfig = base_configs.TrainConfig(
      resume_checkpoint=True,
      epochs=90,
      steps=None,
      callbacks=base_configs.CallbacksConfig(
          enable_checkpoint_and_export=True, enable_tensorboard=True),
      metrics=['accuracy', 'top_5'],
      time_history=base_configs.TimeHistoryConfig(log_steps=100),
      tensorboard=base_configs.TensorBoardConfig(
          track_lr=True, write_model_weights=False),
      set_epoch_loop=False)
  evaluation: base_configs.EvalConfig = base_configs.EvalConfig(
      epochs_between_evals=1, steps=None)
  model: base_configs.ModelConfig = vgg_config.VGGModelConfig()


117
118
119
120
121
122
def get_config(model: str, dataset: str) -> base_configs.ExperimentConfig:
  """Given model and dataset names, return the ExperimentConfig."""
  dataset_model_config_map = {
      'imagenet': {
          'efficientnet': EfficientNetImageNetConfig(),
          'resnet': ResNetImagenetConfig(),
miguelCalado's avatar
miguelCalado committed
123
          'vgg': VGGImagenetConfig(),
124
125
126
127
128
129
130
131
132
133
134
135
136
      }
  }
  try:
    return dataset_model_config_map[dataset][model]
  except KeyError:
    if dataset not in dataset_model_config_map:
      raise KeyError('Invalid dataset received. Received: {}. Supported '
                     'datasets include: {}'.format(
                         dataset, ', '.join(dataset_model_config_map.keys())))
    raise KeyError('Invalid model received. Received: {}. Supported models for'
                   '{} include: {}'.format(
                       model, dataset,
                       ', '.join(dataset_model_config_map[dataset].keys())))