"test/ut/tools/nnictl/mock/experiment.py" did not exist on "80b6cb3b934d3c2965a7412128645e0eefdefaf2"
deeplab.py 5.44 KB
Newer Older
Zhenyu Tan's avatar
Zhenyu Tan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Layers for DeepLabV3."""

import tensorflow as tf


@tf.keras.utils.register_keras_serializable(package='keras_cv')
class ASPP(tf.keras.layers.Layer):
  """Implements the Atrous Spatial Pyramid Pooling.

  Reference:
    [Rethinking Atrous Convolution for Semantic Image Segmentation](
      https://arxiv.org/pdf/1706.05587.pdf)
  """

  def __init__(
      self,
      output_channels,
      dilation_rates,
      batchnorm_momentum=0.99,
      dropout=0.5,
      kernel_initializer='glorot_uniform',
      kernel_regularizer=None,
      interpolation='bilinear',
      **kwargs):
    """Initializes `ASPP`.

    Arguments:
      output_channels: Number of channels produced by ASPP.
      dilation_rates: A list of integers for parallel dilated conv.
      batchnorm_momentum: A float for the momentum in BatchNorm. Defaults to
        0.99.
      dropout: A float for the dropout rate before output. Defaults to 0.5.
      kernel_initializer: Kernel initializer for conv layers. Defaults to
        `glorot_uniform`.
      kernel_regularizer: Kernel regularizer for conv layers. Defaults to None.
      interpolation: The interpolation method for upsampling. Defaults to
        `bilinear`.
      **kwargs: Other keyword arguments for the layer.
    """
    super(ASPP, self).__init__(**kwargs)

    self.output_channels = output_channels
    self.dilation_rates = dilation_rates
    self.batchnorm_momentum = batchnorm_momentum
    self.dropout = dropout
    self.kernel_initializer = tf.keras.initializers.get(kernel_initializer)
    self.kernel_regularizer = tf.keras.regularizers.get(kernel_regularizer)
    self.interpolation = interpolation
    self.input_spec = tf.keras.layers.InputSpec(ndim=4)

  def build(self, input_shape):
    height = input_shape[1]
    width = input_shape[2]
    channels = input_shape[3]

    self.aspp_layers = []

    conv_sequential = tf.keras.Sequential([
        tf.keras.layers.Conv2D(
            filters=self.output_channels, kernel_size=(1, 1),
            kernel_initializer=self.kernel_initializer,
            kernel_regularizer=self.kernel_regularizer, use_bias=False),
        tf.keras.layers.BatchNormalization(momentum=self.batchnorm_momentum),
        tf.keras.layers.Activation('relu')])
    self.aspp_layers.append(conv_sequential)

    for dilation_rate in self.dilation_rates:
      conv_sequential = tf.keras.Sequential([
          tf.keras.layers.Conv2D(
              filters=self.output_channels, kernel_size=(3, 3),
              padding='same', kernel_regularizer=self.kernel_regularizer,
              kernel_initializer=self.kernel_initializer,
              dilation_rate=dilation_rate, use_bias=False),
          tf.keras.layers.BatchNormalization(momentum=self.batchnorm_momentum),
          tf.keras.layers.Activation('relu')])
      self.aspp_layers.append(conv_sequential)

    pool_sequential = tf.keras.Sequential([
        tf.keras.layers.GlobalAveragePooling2D(),
        tf.keras.layers.Reshape((1, 1, channels)),
        tf.keras.layers.Conv2D(
            filters=self.output_channels, kernel_size=(1, 1),
            kernel_initializer=self.kernel_initializer,
            kernel_regularizer=self.kernel_regularizer, use_bias=False),
        tf.keras.layers.BatchNormalization(momentum=self.batchnorm_momentum),
        tf.keras.layers.Activation('relu'),
        tf.keras.layers.experimental.preprocessing.Resizing(
            height, width, interpolation=self.interpolation)])
    self.aspp_layers.append(pool_sequential)

    self.projection = tf.keras.Sequential([
        tf.keras.layers.Conv2D(
            filters=self.output_channels, kernel_size=(1, 1),
            kernel_initializer=self.kernel_initializer,
            kernel_regularizer=self.kernel_regularizer, use_bias=False),
        tf.keras.layers.BatchNormalization(momentum=self.batchnorm_momentum),
        tf.keras.layers.Activation('relu'),
        tf.keras.layers.Dropout(rate=self.dropout)])

  def call(self, inputs, training=None):
    if training is None:
      training = tf.keras.backend.learning_phase()
    result = []
    for layer in self.aspp_layers:
      result.append(layer(inputs, training=training))
    result = tf.concat(result, axis=-1)
    result = self.projection(result, training=training)
    return result

  def get_config(self):
    config = {
        'output_channels': self.output_channels,
        'dilation_rates': self.dilation_rates,
        'batchnorm_momentum': self.batchnorm_momentum,
        'dropout': self.dropout,
        'kernel_initializer': tf.keras.initializers.serialize(
            self.kernel_initializer),
        'kernel_regularizer': tf.keras.regularizers.serialize(
            self.kernel_regularizer),
        'interpolation': self.interpolation,
    }
    base_config = super(ASPP, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))