segmentation_metrics.py 5.33 KB
Newer Older
Abdullah Rashwan's avatar
Abdullah Rashwan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Metrics for segmentation."""

import tensorflow as tf


class MeanIoU(tf.keras.metrics.MeanIoU):
  """Mean IoU metric for semantic segmentation.

  This class utilizes tf.keras.metrics.MeanIoU to perform batched mean iou when
  both input images and groundtruth masks are resized to the same size
  (rescale_predictions=False). It also computes mean iou on groundtruth original
  sizes, in which case, each prediction is rescaled back to the original image
  size.
  """

  def __init__(
      self, num_classes, rescale_predictions=False, name=None, dtype=None):
    """Constructs Segmentation evaluator class.

    Args:
      num_classes: `int`, number of classes.
      rescale_predictions: `bool`, whether to scale back prediction to original
        image sizes. If True, y_true['image_info'] is used to rescale
        predictions.
      name: `str`, name of the metric instance..
      dtype: data type of the metric result.
    """
    self._rescale_predictions = rescale_predictions
    super(MeanIoU, self).__init__(
        num_classes=num_classes, name=name, dtype=dtype)

  def update_state(self, y_true, y_pred):
Fan Yang's avatar
Fan Yang committed
47
    """Updates metric state.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

    Args:
      y_true: `dict`, dictionary with the following name, and key values.
        - masks: [batch, width, height, 1], groundtruth masks.
        - valid_masks: [batch, width, height, 1], valid elements in the mask.
        - image_info: [batch, 4, 2], a tensor that holds information about
          original and preprocessed images. Each entry is in the format of
          [[original_height, original_width], [input_height, input_width],
          [y_scale, x_scale], [y_offset, x_offset]], where [desired_height,
          desired_width] is the actual scaled image size, and [y_scale, x_scale]
          is the scaling factor, which is the ratio of scaled dimension /
          original dimension.
      y_pred: Tensor [batch, width_p, height_p, num_classes], predicated masks.
    """
    predictions = y_pred
    masks = y_true['masks']
    valid_masks = y_true['valid_masks']
    images_info = y_true['image_info']

    if isinstance(predictions, tuple) or isinstance(predictions, list):
      predictions = tf.concat(predictions, axis=0)
      masks = tf.concat(masks, axis=0)
      valid_masks = tf.concat(valid_masks, axis=0)
      images_info = tf.concat(images_info, axis=0)

    # Ignore mask elements is set to zero for argmax op.
    masks = tf.where(valid_masks, masks, tf.zeros_like(masks))

    if self._rescale_predictions:
      # This part can only run on cpu/gpu due to dynamic image resizing.
      flatten_predictions = []
      flatten_masks = []
      flatten_valid_masks = []
      for mask, valid_mask, predicted_mask, image_info in zip(
          masks, valid_masks, predictions, images_info):

        rescale_size = tf.cast(
            tf.math.ceil(image_info[1, :] / image_info[2, :]), tf.int32)
        image_shape = tf.cast(image_info[0, :], tf.int32)
        offsets = tf.cast(image_info[3, :], tf.int32)

        predicted_mask = tf.image.resize(
            predicted_mask,
            rescale_size,
            method=tf.image.ResizeMethod.BILINEAR)

        predicted_mask = tf.image.crop_to_bounding_box(predicted_mask,
                                                       offsets[0], offsets[1],
                                                       image_shape[0],
                                                       image_shape[1])
        mask = tf.image.crop_to_bounding_box(mask, 0, 0, image_shape[0],
                                             image_shape[1])
        valid_mask = tf.image.crop_to_bounding_box(valid_mask, 0, 0,
                                                   image_shape[0],
                                                   image_shape[1])

        predicted_mask = tf.argmax(predicted_mask, axis=2)
        flatten_predictions.append(tf.reshape(predicted_mask, shape=[1, -1]))
        flatten_masks.append(tf.reshape(mask, shape=[1, -1]))
        flatten_valid_masks.append(tf.reshape(valid_mask, shape=[1, -1]))
      flatten_predictions = tf.concat(flatten_predictions, axis=1)
      flatten_masks = tf.concat(flatten_masks, axis=1)
      flatten_valid_masks = tf.concat(flatten_valid_masks, axis=1)

    else:
      predictions = tf.image.resize(
          predictions,
          tf.shape(masks)[1:3],
          method=tf.image.ResizeMethod.BILINEAR)
      predictions = tf.argmax(predictions, axis=3)
      flatten_predictions = tf.reshape(predictions, shape=[-1])
      flatten_masks = tf.reshape(masks, shape=[-1])
      flatten_valid_masks = tf.reshape(valid_masks, shape=[-1])

    super(MeanIoU, self).update_state(
        flatten_masks, flatten_predictions,
        tf.cast(flatten_valid_masks, tf.float32))