keras_imagenet_benchmark.py 36.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes Keras benchmarks and accuracy tests."""
from __future__ import print_function

import os
19
import time
20
21

from absl import flags
22
import tensorflow as tf  # pylint: disable=g-bad-import-order
23

24
25
from official.benchmark import keras_benchmark
from official.vision.image_classification import resnet_imagenet_main
26

Toby Boyd's avatar
Toby Boyd committed
27
28
MIN_TOP_1_ACCURACY = 0.76
MAX_TOP_1_ACCURACY = 0.77
29

Toby Boyd's avatar
Toby Boyd committed
30
FLAGS = flags.FLAGS
31
32


Toby Boyd's avatar
Toby Boyd committed
33
34
class Resnet50KerasAccuracy(keras_benchmark.KerasBenchmark):
  """Benchmark accuracy tests for ResNet50 in Keras."""
35

36
  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
37
38
39
40
41
    """A benchmark class.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
42
43
44
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
45
46
    """

47
    flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags]
Toby Boyd's avatar
Toby Boyd committed
48

49
    self.data_dir = os.path.join(root_data_dir, 'imagenet')
50
51
    super(Resnet50KerasAccuracy, self).__init__(
        output_dir=output_dir, flag_methods=flag_methods)
52

Toby Boyd's avatar
Toby Boyd committed
53
  def benchmark_graph_8_gpu(self):
54
55
    """Test Keras model with Keras fit/dist_strat and 8 GPUs."""
    self._setup()
Toby Boyd's avatar
Toby Boyd committed
56
    FLAGS.num_gpus = 8
57
    FLAGS.data_dir = self.data_dir
58
    FLAGS.batch_size = 128 * 8
Toby Boyd's avatar
Toby Boyd committed
59
    FLAGS.train_epochs = 90
60
    FLAGS.epochs_between_evals = 10
61
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu')
Toby Boyd's avatar
Toby Boyd committed
62
    FLAGS.dtype = 'fp32'
63
    FLAGS.use_tensor_lr = True
64
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
65
66

  def benchmark_8_gpu(self):
67
68
    """Test Keras model with eager, dist_strat and 8 GPUs."""
    self._setup()
Toby Boyd's avatar
Toby Boyd committed
69
    FLAGS.num_gpus = 8
70
    FLAGS.data_dir = self.data_dir
71
    FLAGS.batch_size = 128 * 8
Toby Boyd's avatar
Toby Boyd committed
72
    FLAGS.train_epochs = 90
73
    FLAGS.epochs_between_evals = 10
74
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
Toby Boyd's avatar
Toby Boyd committed
75
76
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
77
78
    # Add some thread tunings to improve performance.
    FLAGS.datasets_num_private_threads = 14
79
    FLAGS.use_tensor_lr = True
80
    self._run_and_report_benchmark()
81
82
83
84
85
86
87
88
89
90
    
  def benchmark_8_gpu_amp(self):
    """Test Keras model with eager, dist_strat and 8 GPUs with automatic mixed precision."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 128 * 8
    FLAGS.train_epochs = 90
    FLAGS.epochs_between_evals = 10
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp')
Vinh Nguyen's avatar
Vinh Nguyen committed
91
    FLAGS.dtype = 'fp16'
92
    FLAGS.enable_eager = True
93
    FLAGS.fp16_implementation = 'graph_rewrite'
94
95
96
97
98
    # Add some thread tunings to improve performance.
    FLAGS.datasets_num_private_threads = 14
    FLAGS.use_tensor_lr = True
    self._run_and_report_benchmark()
    
Reed's avatar
Reed committed
99
100
101
102
103
104
105
  def benchmark_8_gpu_fp16(self):
    """Test Keras model with eager, dist_strat, 8 GPUs, and fp16."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 256 * 8
    FLAGS.train_epochs = 90
106
    FLAGS.epochs_between_evals = 10
Reed's avatar
Reed committed
107
108
109
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
110
111
    # Thread tuning to improve performance.
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
112
    FLAGS.use_tensor_lr = True
Reed's avatar
Reed committed
113
114
115
116
117
118
119
120
121
    self._run_and_report_benchmark()

  def benchmark_xla_8_gpu_fp16(self):
    """Test Keras model with XLA, eager, dist_strat, 8 GPUs and fp16."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 256 * 8
    FLAGS.train_epochs = 90
122
    FLAGS.epochs_between_evals = 10
Reed's avatar
Reed committed
123
124
125
126
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
127
128
    # Thread tuning to improve performance.
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
129
    FLAGS.use_tensor_lr = True
Reed's avatar
Reed committed
130
131
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
  def benchmark_8_gpu_mlperf_like(self):
    """Test similar to the rules for MLPerf 0.5.

    Listed below are reasons this comparison is not to the MLSpec, but this is
    still a decent directional measurement:
      - Eval is every 4 epochs and again at the end. ~2 extra times.
      - Learning rate is not tuned to hit 75%, but we know the model is correct.
      - We measure total time and MLPerf 0.5 excluded some startup time.
      - Eval is not on the total set, need to set eval batch_size where
        8*batch_size/50K is even. 250 is a good number.
      - Not sure if we are doing any extra or too few steps due to epoch bleed.
    """
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 256 * 8
    FLAGS.train_epochs = 61
    FLAGS.epochs_between_evals = 4
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_mlperf_like')
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
154
    self._run_and_report_benchmark(top_1_min=0.736)
Toby Boyd's avatar
Toby Boyd committed
155

156
157
158
159
160
161
162
  def benchmark_xla_8_gpu_fp16_dynamic(self):
    """Test Keras model with XLA, eager, dist_strat, 8 GPUs, dynamic fp16."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 256 * 8
    FLAGS.train_epochs = 90
163
    FLAGS.epochs_between_evals = 10
164
165
166
167
168
169
170
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.loss_scale = 'dynamic'
    # Thread tuning to improve performance.
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
171
    FLAGS.use_tensor_lr = True
172
    self._run_and_report_benchmark(top_1_min=0.736)
173

174
175
176
  def _run_and_report_benchmark(self,
                                top_1_min=MIN_TOP_1_ACCURACY,
                                top_1_max=MAX_TOP_1_ACCURACY):
177
    start_time_sec = time.time()
178
    stats = resnet_imagenet_main.run(flags.FLAGS)
179
180
181
    wall_time_sec = time.time() - start_time_sec

    super(Resnet50KerasAccuracy, self)._report_benchmark(
Toby Boyd's avatar
Toby Boyd committed
182
        stats,
183
        wall_time_sec,
184
185
        top_1_min=top_1_min,
        top_1_max=top_1_max,
186
        total_batch_size=FLAGS.batch_size,
Toby Boyd's avatar
Toby Boyd committed
187
        log_steps=100)
188
189
190
191

  def _get_model_dir(self, folder_name):
    return os.path.join(self.output_dir, folder_name)

Toby Boyd's avatar
Toby Boyd committed
192
193
194
195
196

class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark):
  """Resnet50 benchmarks."""

  def __init__(self, output_dir=None, default_flags=None):
197
    flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags]
Toby Boyd's avatar
Toby Boyd committed
198
199
200
201
202
203

    super(Resnet50KerasBenchmarkBase, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=default_flags)

204
205
  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
206
    stats = resnet_imagenet_main.run(FLAGS)
207
    wall_time_sec = time.time() - start_time_sec
208
209
210
    # Number of logged step time entries that are excluded in performance
    # report. We keep results from last 100 batches in this case.
    warmup = (FLAGS.train_steps - 100) // FLAGS.log_steps
211
212
213
214
215

    super(Resnet50KerasBenchmarkBase, self)._report_benchmark(
        stats,
        wall_time_sec,
        total_batch_size=FLAGS.batch_size,
216
217
        log_steps=FLAGS.log_steps,
        warmup=warmup)
Toby Boyd's avatar
Toby Boyd committed
218
219

  def benchmark_1_gpu_no_dist_strat(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
220
    """Test Keras model with 1 GPU, no distribution strategy."""
Toby Boyd's avatar
Toby Boyd committed
221
222
223
224
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
225
    FLAGS.distribution_strategy = 'off'
226
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
Toby Boyd's avatar
Toby Boyd committed
227
    FLAGS.batch_size = 128
228
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
229

230
231
232
233
234
235
236
237
238
239
240
241
242
243
  def benchmark_1_gpu_no_dist_strat_tweaked(self):
    """Test with 1 GPU, no distribution strategy, and manual tuning."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.explicit_gpu_placement = True
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.set_learning_phase_to_train = False
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_tweaked')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

244
245
246
247
248
249
250
251
252
253
254
255
256
  def benchmark_1_gpu_no_dist_strat_run_eagerly(self):
    """Test Keras model with 1 GPU, no distribution strategy, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly')
    FLAGS.batch_size = 64
    self._run_and_report_benchmark()

257
258
259
260
261
262
263
264
265
266
267
268
269
270
  def benchmark_1_gpu_no_dist_strat_run_eagerly_tweaked(self):
    """Test Keras model with 1 GPU, no distribution strategy, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.explicit_gpu_placement = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_tweaked')
    FLAGS.batch_size = 64
    self._run_and_report_benchmark()

271
272
273
274
275
276
277
278
279
280
281
282
283
284
  def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16(self):
    """Test with 1 GPU, no distribution strategy, fp16, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
  def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16_tweaked(self):
    """Test with 1 GPU, no distribution strategy, fp16, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.explicit_gpu_placement = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_fp16_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
300
  def benchmark_graph_1_gpu_no_dist_strat(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
301
    """Test Keras model in legacy graph mode with 1 GPU, no dist strat."""
Toby Boyd's avatar
Toby Boyd committed
302
303
304
305
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
306
    FLAGS.distribution_strategy = 'off'
307
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu_no_dist_strat')
308
309
    FLAGS.batch_size = 96  # BatchNorm is less efficient in legacy graph mode
                           # due to its reliance on v1 cond.
310
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
311
312

  def benchmark_1_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
313
    """Test Keras model with 1 GPU."""
Toby Boyd's avatar
Toby Boyd committed
314
315
316
317
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
318
    FLAGS.distribution_strategy = 'default'
319
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
Toby Boyd's avatar
Toby Boyd committed
320
    FLAGS.batch_size = 128
321
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
322

323
324
325
326
327
328
  def benchmark_1_gpu_amp(self):
    """Test Keras model with 1 GPU with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
Vinh Nguyen's avatar
Vinh Nguyen committed
329
    FLAGS.dtype = 'fp16'
330
    FLAGS.fp16_implementation = 'graph_rewrite'
331
332
333
334
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_amp')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()
335

Haoyu Zhang's avatar
Haoyu Zhang committed
336
337
338
339
340
341
342
343
344
345
346
347
  def benchmark_xla_1_gpu(self):
    """Test Keras model with XLA and 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

348
349
350
351
352
353
  def benchmark_xla_1_gpu_amp(self):
    """Test Keras model with XLA and 1 GPU with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
Vinh Nguyen's avatar
Vinh Nguyen committed
354
    FLAGS.dtype = 'fp16'
355
    FLAGS.fp16_implementation = 'graph_rewrite'
356
357
358
359
360
361
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_amp')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
362
  def benchmark_1_gpu_fp16(self):
363
    """Test Keras model with 1 GPU and fp16."""
Reed's avatar
Reed committed
364
365
366
367
368
369
370
371
372
373
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

374
375
376
377
378
379
380
381
382
383
384
385
386
  def benchmark_1_gpu_fp16_dynamic(self):
    """Test Keras model with 1 GPU, fp16, and dynamic loss scaling."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.loss_scale = 'dynamic'
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
387
388
389
390
391
392
393
394
395
396
397
398
399
  def benchmark_xla_1_gpu_fp16(self):
    """Test Keras model with XLA, 1 GPU and fp16."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

400
401
402
403
404
405
406
407
408
409
410
  def benchmark_xla_1_gpu_fp16_tweaked(self):
    """Test Keras model with XLA, 1 GPU, fp16, and manual config tuning."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
411
    FLAGS.use_tensor_lr = True
412
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
413
414
    self._run_and_report_benchmark()

415
416
417
418
419
420
421
422
423
424
425
426
427
428
  def benchmark_xla_1_gpu_fp16_dynamic(self):
    """Test Keras model with XLA, 1 GPU, fp16, and dynamic loss scaling."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.loss_scale = 'dynamic'
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
429
  def benchmark_graph_1_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
430
    """Test Keras model in legacy graph mode with 1 GPU."""
Toby Boyd's avatar
Toby Boyd committed
431
432
433
434
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
435
    FLAGS.distribution_strategy = 'default'
436
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu')
Toby Boyd's avatar
Toby Boyd committed
437
    FLAGS.batch_size = 128
438
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
439

Haoyu Zhang's avatar
Haoyu Zhang committed
440
441
442
443
444
445
446
447
448
449
450
451
  def benchmark_graph_xla_1_gpu(self):
    """Test Keras model in legacy graph mode with XLA and 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_xla_1_gpu')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

452
453
454
455
456
  def benchmark_graph_1_gpu_fp16(self):
    """Test Keras model in legacy graph mode with 1 GPU and fp16."""
    self._setup()

    FLAGS.num_gpus = 1
457
    FLAGS.dtype = 'fp16'
458
459
460
461
462
463
464
465
466
467
468
    FLAGS.enable_eager = False
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu_fp16')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

  def benchmark_graph_xla_1_gpu_fp16(self):
    """Test Keras model in legacy graph mode with 1 GPU, fp16 and XLA."""
    self._setup()

    FLAGS.num_gpus = 1
469
    FLAGS.dtype = 'fp16'
470
471
472
473
474
475
476
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_xla_1_gpu_fp16')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

477
  def benchmark_graph_xla_1_gpu_fp16_tweaked(self):
478
    """Test Keras model in legacy graph with 1 GPU, fp16, XLA, and tuning."""
479
480
481
482
483
484
485
486
487
488
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_xla_1_gpu_fp16_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
489
    FLAGS.use_tensor_lr = True
490
491
492
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
493
  def benchmark_8_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
494
    """Test Keras model with 8 GPUs."""
Toby Boyd's avatar
Toby Boyd committed
495
496
497
498
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
499
    FLAGS.distribution_strategy = 'default'
500
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
Toby Boyd's avatar
Toby Boyd committed
501
    FLAGS.batch_size = 128 * 8  # 8 GPUs
502
    self._run_and_report_benchmark()
503

504
505
506
507
508
509
  def benchmark_8_gpu_amp(self):
    """Test Keras model with 8 GPUs with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
Vinh Nguyen's avatar
Vinh Nguyen committed
510
    FLAGS.dtype = 'fp16'
511
    FLAGS.fp16_implementation = 'graph_rewrite'
512
513
514
515
516
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()
    
517
  def benchmark_8_gpu_tweaked(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
518
    """Test Keras model with manual config tuning and 8 GPUs."""
519
520
521
522
523
524
525
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_tweaked')
    FLAGS.batch_size = 128 * 8  # 8 GPUs
526
    FLAGS.use_tensor_lr = True
527
    FLAGS.datasets_num_private_threads = 14
528
529
    self._run_and_report_benchmark()

Haoyu Zhang's avatar
Haoyu Zhang committed
530
531
532
533
534
535
536
537
538
  def benchmark_xla_8_gpu(self):
    """Test Keras model with XLA and 8 GPUs."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu')
539
    FLAGS.batch_size = 128 * 8  # 8 GPUs
Haoyu Zhang's avatar
Haoyu Zhang committed
540
541
    self._run_and_report_benchmark()

542
543
544
545
546
547
  def benchmark_xla_8_gpu_amp(self):
    """Test Keras model with XLA and 8 GPUs with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
Vinh Nguyen's avatar
Vinh Nguyen committed
548
    FLAGS.dtype = 'fp16'
549
    FLAGS.fp16_implementation = 'graph_rewrite'
550
551
552
553
554
555
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_amp')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()
    
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
  def benchmark_xla_8_gpu_tweaked(self):
    """Test Keras model with manual config tuning, 8 GPUs, and XLA."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_tweaked')
    FLAGS.batch_size = 128 * 8
    FLAGS.use_tensor_lr = True
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.datasets_num_private_threads = 24
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
571
  def benchmark_8_gpu_fp16(self):
572
    """Test Keras model with 8 GPUs and fp16."""
Reed's avatar
Reed committed
573
574
575
    self._setup()

    FLAGS.num_gpus = 8
576
    FLAGS.dtype = 'fp16'
Reed's avatar
Reed committed
577
578
579
580
581
582
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()

583
  def benchmark_8_gpu_fp16_tweaked(self):
584
    """Test Keras model with 8 GPUs, fp16, and manual config tuning."""
585
586
587
588
589
590
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
591
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16_tweaked')
592
    FLAGS.batch_size = 256 * 8  # 8 GPUs
593
    FLAGS.use_tensor_lr = True
594
595
596
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

597
  def benchmark_8_gpu_fp16_dynamic_tweaked(self):
Toby Boyd's avatar
Toby Boyd committed
598
    """Test Keras model with 8 GPUs, fp16, dynamic loss scaling, and tuned."""
599
600
601
602
603
604
605
606
607
608
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_8_gpu_fp16_dynamic_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.loss_scale = 'dynamic'
609
    FLAGS.use_tensor_lr = True
610
611
612
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
613
  def benchmark_xla_8_gpu_fp16(self):
614
    """Test Keras model with XLA, 8 GPUs and fp16."""
Reed's avatar
Reed committed
615
616
617
    self._setup()

    FLAGS.num_gpus = 8
618
    FLAGS.dtype = 'fp16'
Reed's avatar
Reed committed
619
620
621
622
623
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
624
625
    self._run_and_report_benchmark()

626
627
628
629
630
631
632
633
634
635
636
  def benchmark_xla_8_gpu_fp16_tweaked(self):
    """Test Keras model with manual config tuning, XLA, 8 GPUs and fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
637
    FLAGS.use_tensor_lr = True
638
639
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.datasets_num_private_threads = 48
640
641
    self._run_and_report_benchmark()

642
  def benchmark_xla_8_gpu_fp16_tweaked_delay_measure(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
643
644
645
    """Test with manual config tuning, XLA, 8 GPUs and fp16.

    Delay performance measurement for stable performance on 96 vCPU platforms.
646
647
648
649
650
651
652
653
654
655
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_fp16_tweaked_delay_measure')
656
    FLAGS.batch_size = 256 * 8
657
658
659
660
661
    FLAGS.use_tensor_lr = True
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.train_steps = 310
    self._run_and_report_benchmark()

662
663
664
665
666
667
668
669
670
671
672
673
674
  def benchmark_xla_8_gpu_fp16_dynamic_tweaked(self):
    """Test Keras model with config tuning, XLA, 8 GPUs and dynamic fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_fp16_dynamic_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.loss_scale = 'dynamic'
675
    FLAGS.use_tensor_lr = True
676
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
677
    FLAGS.datasets_num_private_threads = 48
678
679
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
680
  def benchmark_graph_8_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
681
    """Test Keras model in legacy graph mode with 8 GPUs."""
Toby Boyd's avatar
Toby Boyd committed
682
683
684
685
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = False
686
    FLAGS.distribution_strategy = 'default'
687
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu')
Toby Boyd's avatar
Toby Boyd committed
688
    FLAGS.batch_size = 128 * 8  # 8 GPUs
689
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
690

Haoyu Zhang's avatar
Haoyu Zhang committed
691
692
693
694
695
696
697
698
699
  def benchmark_graph_xla_8_gpu(self):
    """Test Keras model in legacy graph mode with XLA and 8 GPUs."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_xla_8_gpu')
700
    FLAGS.batch_size = 128 * 8  # 8 GPUs
Haoyu Zhang's avatar
Haoyu Zhang committed
701
702
    self._run_and_report_benchmark()

703
704
705
706
707
708
709
710
711
712
713
714
  def benchmark_graph_8_gpu_fp16(self):
    """Test Keras model in legacy graph mode with 8 GPUs and fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()

715
716
717
718
719
720
721
722
723
724
725
726
727
  def benchmark_graph_xla_8_gpu_fp16(self):
    """Test Keras model in legacy graph mode with XLA, 8 GPUs and fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_xla_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()

728
  def benchmark_graph_8_gpu_fp16_tweaked(self):
729
    """Test Keras model in legacy graph mode, tuning, 8 GPUs, and FP16."""
730
731
732
733
734
735
736
737
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu_fp16_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
738
    FLAGS.use_tensor_lr = True
739
740
741
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

742
  def benchmark_graph_xla_8_gpu_fp16_tweaked(self):
743
    """Test Keras model in legacy graph tuning, XLA_FP16, 8 GPUs and fp16."""
744
745
746
747
748
749
750
751
752
753
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_xla_8_gpu_fp16_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
754
    FLAGS.use_tensor_lr = True
755
756
757
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

758
  def benchmark_graph_xla_8_gpu_fp16_tweaked_delay_measure(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
759
760
761
    """Test in legacy graph mode with manual config tuning, XLA, 8 GPUs, fp16.

    Delay performance measurement for stable performance on 96 vCPU platforms.
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_xla_8_gpu_fp16_tweaked_delay_measure')
    FLAGS.batch_size = 256 * 8
    FLAGS.use_tensor_lr = True
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.train_steps = 310
    self._run_and_report_benchmark()

778
779
780
781
782
783
784
785
786
787
788
789
  def benchmark_graph_8_gpu_fp16_dynamic_tweaked(self):
    """Test graph Keras with config tuning, 8 GPUs and dynamic fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_8_gpu_fp16_dynamic_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.loss_scale = 'dynamic'
790
    FLAGS.use_tensor_lr = True
791
792
793
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

794
795
796
797
798
799
800
801
802
803
804
805
  def benchmark_graph_xla_8_gpu_fp16_dynamic_tweaked(self):
    """Test graph Keras with config tuning, XLA, 8 GPUs and dynamic fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_xla_8_gpu_fp16_dynamic_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
806
    FLAGS.use_tensor_lr = True
807
808
809
810
    FLAGS.loss_scale = 'dynamic'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
811
812
813
814
815
816
  def fill_report_object(self, stats):
    super(Resnet50KerasBenchmarkBase, self).fill_report_object(
        stats,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)

Toby Boyd's avatar
Toby Boyd committed
817
818
819
820

class Resnet50KerasBenchmarkSynth(Resnet50KerasBenchmarkBase):
  """Resnet50 synthetic benchmark tests."""

821
  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
Toby Boyd's avatar
Toby Boyd committed
822
823
    def_flags = {}
    def_flags['skip_eval'] = True
824
    def_flags['report_accuracy_metrics'] = False
Toby Boyd's avatar
Toby Boyd committed
825
826
827
828
    def_flags['use_synthetic_data'] = True
    def_flags['train_steps'] = 110
    def_flags['log_steps'] = 10

829
830
    super(Resnet50KerasBenchmarkSynth, self).__init__(
        output_dir=output_dir, default_flags=def_flags)
Toby Boyd's avatar
Toby Boyd committed
831
832
833
834
835


class Resnet50KerasBenchmarkReal(Resnet50KerasBenchmarkBase):
  """Resnet50 real data benchmark tests."""

836
  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
Toby Boyd's avatar
Toby Boyd committed
837
838
    def_flags = {}
    def_flags['skip_eval'] = True
839
    def_flags['report_accuracy_metrics'] = False
840
    def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
Toby Boyd's avatar
Toby Boyd committed
841
842
843
    def_flags['train_steps'] = 110
    def_flags['log_steps'] = 10

844
845
    super(Resnet50KerasBenchmarkReal, self).__init__(
        output_dir=output_dir, default_flags=def_flags)
846
847


848
class TrivialKerasBenchmarkReal(keras_benchmark.KerasBenchmark):
849
850
851
  """Trivial model with real data benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
852
    flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags]
Toby Boyd's avatar
Toby Boyd committed
853

854
    def_flags = {}
855
    def_flags['use_trivial_model'] = True
856
    def_flags['skip_eval'] = True
857
    def_flags['report_accuracy_metrics'] = False
858
    def_flags['use_tensor_lr'] = True
859
860
861
862
863
864
    def_flags['dtype'] = 'fp16'
    def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
    def_flags['train_steps'] = 600
    def_flags['log_steps'] = 100
    def_flags['distribution_strategy'] = 'default'

865
    super(TrivialKerasBenchmarkReal, self).__init__(
866
867
868
869
870
871
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=def_flags)

  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
872
    stats = resnet_imagenet_main.run(FLAGS)
873
874
    wall_time_sec = time.time() - start_time_sec

875
    super(TrivialKerasBenchmarkReal, self)._report_benchmark(
876
877
878
879
880
        stats,
        wall_time_sec,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)

881
882
883
884
885
886
887
  def benchmark_8_gpu_warmup(self):
    """Dummy test that runs over an epoch to warmup the machine."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_warmup')
888
    FLAGS.batch_size = 256 * 8
889
890
891
    FLAGS.train_steps = 700
    self._run_and_report_benchmark()

892
893
894
895
896
897
  def benchmark_1_gpu(self):
    """Test trivial Keras model (input pipeline) with 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
898
    FLAGS.enable_xla = True
899
900
901
902
903
904
905
906
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

  def benchmark_graph_1_gpu(self):
    """Test trivial Keras model (input pipeline) with 1 GPU."""
    self._setup()

907
    FLAGS.num_gpus = 1
908
    FLAGS.enable_eager = False
909
    FLAGS.enable_xla = True
910
911
912
913
914
915
916
917
918
919
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

  def benchmark_8_gpu(self):
    """Test trivial Keras model (input pipeline) with 8 GPUs."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
920
    FLAGS.enable_xla = True
921
922
923
924
925
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    FLAGS.batch_size = 256 * 8
    self._run_and_report_benchmark()

  def benchmark_8_gpu_tweaked(self):
926
    """Test trivial Keras model with tuning and 8 GPUs."""
927
928
929
930
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
931
    FLAGS.enable_xla = True
932
933
934
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_tweaked')
    FLAGS.batch_size = 256 * 8
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
935
    FLAGS.datasets_num_private_threads = 48
936
937
938
    self._run_and_report_benchmark()

  def benchmark_graph_8_gpu(self):
939
    """Test trivial Keras model in legacy graph mode with 8 GPUs."""
940
941
942
943
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = False
944
    FLAGS.enable_xla = True
945
946
947
948
949
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu')
    FLAGS.batch_size = 256 * 8
    self._run_and_report_benchmark()

  def benchmark_graph_8_gpu_tweaked(self):
950
    """Test trivial Keras model in legacy graph mode with tuning and 8 GPUs."""
951
952
953
954
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = False
955
    FLAGS.enable_xla = True
956
957
958
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu_tweaked')
    FLAGS.batch_size = 256 * 8
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
959
    FLAGS.datasets_num_private_threads = 48
960
961
962
    self._run_and_report_benchmark()

  def fill_report_object(self, stats):
963
    super(TrivialKerasBenchmarkReal, self).fill_report_object(
964
965
966
        stats,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)
967
968


969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
class Resnet50MultiWorkerKerasBenchmark(Resnet50KerasBenchmarkBase):
  """Resnet50 distributed benchmark tests with multiple workers."""

  def __init__(self, output_dir=None, default_flags=None):
    super(Resnet50MultiWorkerKerasBenchmark, self).__init__(
        output_dir=output_dir, default_flags=default_flags)

  def _benchmark_common(self, eager, num_workers, all_reduce_alg):
    """Common to all benchmarks in this class."""
    self._setup()

    num_gpus = 8
    FLAGS.num_gpus = num_gpus
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = eager
    FLAGS.enable_xla = False
    FLAGS.distribution_strategy = 'multi_worker_mirrored'
    FLAGS.use_tensor_lr = True
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_8_gpu_{}_worker_fp16_{}_tweaked'.format(
            num_workers, all_reduce_alg))
    FLAGS.batch_size = 256 * num_gpus * num_workers
    FLAGS.all_reduce_alg = all_reduce_alg

    self._run_and_report_benchmark()

  def benchmark_graph_8_gpu_1_worker_fp16_ring_tweaked(self):
    """Legacy graph, 8 GPUs per worker, 1 worker, fp16, ring all-reduce."""
    self._benchmark_common(eager=False, num_workers=1, all_reduce_alg='ring')

  def benchmark_graph_8_gpu_1_worker_fp16_nccl_tweaked(self):
    """Legacy graph, 8 GPUs per worker, 1 worker, fp16, nccl all-reduce."""
    self._benchmark_common(eager=False, num_workers=1, all_reduce_alg='nccl')

  def benchmark_graph_8_gpu_2_workers_fp16_ring_tweaked(self):
    """Legacy graph, 8 GPUs per worker, 2 workers, fp16, ring all-reduce."""
    self._benchmark_common(eager=False, num_workers=2, all_reduce_alg='ring')

  def benchmark_graph_8_gpu_2_workers_fp16_nccl_tweaked(self):
    """Legacy graph, 8 GPUs per worker, 2 workers, fp16, nccl all-reduce."""
    self._benchmark_common(eager=False, num_workers=2, all_reduce_alg='nccl')

  def benchmark_graph_8_gpu_8_workers_fp16_ring_tweaked(self):
    """Legacy graph, 8 GPUs per worker, 8 workers, fp16, ring all-reduce."""
    self._benchmark_common(eager=False, num_workers=8, all_reduce_alg='ring')

  def benchmark_graph_8_gpu_8_workers_fp16_nccl_tweaked(self):
    """Legacy graph, 8 GPUs per worker, 8 workers, fp16, nccl all-reduce."""
    self._benchmark_common(eager=False, num_workers=8, all_reduce_alg='nccl')

  def benchmark_eager_8_gpu_1_worker_fp16_ring_tweaked(self):
    """Eager, 8 GPUs per worker, 1 worker, fp16, ring all-reduce."""
    self._benchmark_common(eager=True, num_workers=1, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_1_worker_fp16_nccl_tweaked(self):
    """Eager, 8 GPUs per worker, 1 worker, fp16, nccl all-reduce."""
    self._benchmark_common(eager=True, num_workers=1, all_reduce_alg='nccl')

  def benchmark_eager_8_gpu_2_workers_fp16_ring_tweaked(self):
    """Eager, 8 GPUs per worker, 2 workers, fp16, ring all-reduce."""
    self._benchmark_common(eager=True, num_workers=2, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_2_workers_fp16_nccl_tweaked(self):
    """Eager, 8 GPUs per worker, 2 workers, fp16, nccl all-reduce."""
    self._benchmark_common(eager=True, num_workers=2, all_reduce_alg='nccl')

  def benchmark_eager_8_gpu_8_workers_fp16_ring_tweaked(self):
    """Eager, 8 GPUs per worker, 8 workers, fp16, ring all-reduce."""
    self._benchmark_common(eager=True, num_workers=8, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_8_workers_fp16_nccl_tweaked(self):
    """Eager, 8 GPUs per worker, 8 workers, fp16, nccl all-reduce."""
    self._benchmark_common(eager=True, num_workers=8, all_reduce_alg='nccl')


Ayush Dubey's avatar
Ayush Dubey committed
1045
class Resnet50MultiWorkerKerasBenchmarkSynth(Resnet50MultiWorkerKerasBenchmark):
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
  """Resnet50 multi-worker synthetic benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    def_flags = {}
    def_flags['skip_eval'] = True
    def_flags['report_accuracy_metrics'] = False
    def_flags['use_synthetic_data'] = True
    def_flags['train_steps'] = 110
    def_flags['log_steps'] = 10

    super(Resnet50MultiWorkerKerasBenchmarkSynth, self).__init__(
        output_dir=output_dir, default_flags=def_flags)


1060
1061
if __name__ == '__main__':
  tf.test.main()