export_savedmodel.py 5.19 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""A binary/library to export TF-NLP serving `SavedModel`."""
import os
from typing import Any, Dict, Text
from absl import app
from absl import flags
import dataclasses
import yaml
from official.core import base_task
from official.core import task_factory
from official.modeling import hyperparams
from official.modeling.hyperparams import base_config
from official.nlp.serving import export_savedmodel_util
from official.nlp.serving import serving_modules
from official.nlp.tasks import masked_lm
from official.nlp.tasks import question_answering
from official.nlp.tasks import sentence_prediction
from official.nlp.tasks import tagging

FLAGS = flags.FLAGS

SERVING_MODULES = {
    sentence_prediction.SentencePredictionTask:
        serving_modules.SentencePrediction,
    masked_lm.MaskedLMTask:
        serving_modules.MaskedLM,
    question_answering.QuestionAnsweringTask:
        serving_modules.QuestionAnswering,
    tagging.TaggingTask:
        serving_modules.Tagging
}


def define_flags():
  """Defines flags."""
  flags.DEFINE_string("task_name", "SentencePrediction", "The task to export.")
  flags.DEFINE_string("config_file", None,
                      "The path to task/experiment yaml config file.")
  flags.DEFINE_string(
      "checkpoint_path", None,
      "Object-based checkpoint path, from the training model directory.")
  flags.DEFINE_string("export_savedmodel_dir", None,
                      "Output saved model directory.")
  flags.DEFINE_string(
      "serving_params", None,
      "a YAML/JSON string or csv string for the serving parameters.")
  flags.DEFINE_string(
      "function_keys", None,
      "A string key to retrieve pre-defined serving signatures.")
  flags.DEFINE_bool("convert_tpu", False, "")
  flags.DEFINE_multi_integer("allowed_batch_size", None,
                             "Allowed batch sizes for batching ops.")


def lookup_export_module(task: base_task.Task):
  export_module_cls = SERVING_MODULES.get(task.__class__, None)
  if export_module_cls is None:
    ValueError("No registered export module for the task: %s", task.__class__)
  return export_module_cls


def create_export_module(*, task_name: Text, config_file: Text,
                         serving_params: Dict[Text, Any]):
  """Creates a ExportModule."""
  task_config_cls = None
  task_cls = None
  # pylint: disable=protected-access
  for key, value in task_factory._REGISTERED_TASK_CLS.items():
    print(key.__name__)
    if task_name in key.__name__:
      task_config_cls, task_cls = key, value
      break
  if task_cls is None:
    raise ValueError("Failed to identify the task class. The provided task "
                     f"name is {task_name}")
  # pylint: enable=protected-access
  # TODO(hongkuny): Figure out how to separate the task config from experiments.

  @dataclasses.dataclass
  class Dummy(base_config.Config):
    task: task_config_cls = task_config_cls()

  dummy_exp = Dummy()
  dummy_exp = hyperparams.override_params_dict(
      dummy_exp, config_file, is_strict=False)
  dummy_exp.task.validation_data = None
  task = task_cls(dummy_exp.task)
  model = task.build_model()
  export_module_cls = lookup_export_module(task)
  params = export_module_cls.Params(**serving_params)
  return export_module_cls(params=params, model=model)


def main(_):
  serving_params = yaml.load(
      hyperparams.nested_csv_str_to_json_str(FLAGS.serving_params),
      Loader=yaml.FullLoader)
  export_module = create_export_module(
      task_name=FLAGS.task_name,
      config_file=FLAGS.config_file,
      serving_params=serving_params)
  export_dir = export_savedmodel_util.export(
      export_module,
      function_keys=[FLAGS.function_keys],
      checkpoint_path=FLAGS.checkpoint_path,
      export_savedmodel_dir=FLAGS.export_savedmodel_dir)

  if FLAGS.convert_tpu:
    # pylint: disable=g-import-not-at-top
    from cloud_tpu.inference_converter import converter_cli
    from cloud_tpu.inference_converter import converter_options_pb2
    tpu_dir = os.path.join(export_dir, "tpu")
    options = converter_options_pb2.ConverterOptions()
    if FLAGS.allowed_batch_size is not None:
      allowed_batch_sizes = sorted(FLAGS.allowed_batch_size)
      options.batch_options.num_batch_threads = 4
      options.batch_options.max_batch_size = allowed_batch_sizes[-1]
      options.batch_options.batch_timeout_micros = 100000
      options.batch_options.allowed_batch_sizes[:] = allowed_batch_sizes
      options.batch_options.max_enqueued_batches = 1000
    converter_cli.ConvertSavedModel(
        export_dir, tpu_dir, function_alias="tpu_candidate", options=options,
        graph_rewrite_only=True)


if __name__ == "__main__":
  define_flags()
  app.run(main)