config_util.py 24.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions for reading and updating configuration files."""

17
import os
18
19
20
21
import tensorflow as tf

from google.protobuf import text_format

22
23
from tensorflow.python.lib.io import file_io

24
from object_detection.protos import eval_pb2
25
from object_detection.protos import graph_rewriter_pb2
26
27
28
29
30
31
from object_detection.protos import input_reader_pb2
from object_detection.protos import model_pb2
from object_detection.protos import pipeline_pb2
from object_detection.protos import train_pb2


32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
def get_image_resizer_config(model_config):
  """Returns the image resizer config from a model config.

  Args:
    model_config: A model_pb2.DetectionModel.

  Returns:
    An image_resizer_pb2.ImageResizer.

  Raises:
    ValueError: If the model type is not recognized.
  """
  meta_architecture = model_config.WhichOneof("model")
  if meta_architecture == "faster_rcnn":
    return model_config.faster_rcnn.image_resizer
  if meta_architecture == "ssd":
    return model_config.ssd.image_resizer

  raise ValueError("Unknown model type: {}".format(meta_architecture))


def get_spatial_image_size(image_resizer_config):
  """Returns expected spatial size of the output image from a given config.

  Args:
    image_resizer_config: An image_resizer_pb2.ImageResizer.

  Returns:
    A list of two integers of the form [height, width]. `height` and `width` are
    set  -1 if they cannot be determined during graph construction.

  Raises:
    ValueError: If the model type is not recognized.
  """
  if image_resizer_config.HasField("fixed_shape_resizer"):
67
68
69
70
    return [
        image_resizer_config.fixed_shape_resizer.height,
        image_resizer_config.fixed_shape_resizer.width
    ]
71
72
73
74
75
76
77
78
  if image_resizer_config.HasField("keep_aspect_ratio_resizer"):
    if image_resizer_config.keep_aspect_ratio_resizer.pad_to_max_dimension:
      return [image_resizer_config.keep_aspect_ratio_resizer.max_dimension] * 2
    else:
      return [-1, -1]
  raise ValueError("Unknown image resizer type.")


79
def get_configs_from_pipeline_file(pipeline_config_path):
80
  """Reads config from a file containing pipeline_pb2.TrainEvalPipelineConfig.
81
82
83
84
85
86
87
88
89
90
91
92
93
94

  Args:
    pipeline_config_path: Path to pipeline_pb2.TrainEvalPipelineConfig text
      proto.

  Returns:
    Dictionary of configuration objects. Keys are `model`, `train_config`,
      `train_input_config`, `eval_config`, `eval_input_config`. Value are the
      corresponding config objects.
  """
  pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
  with tf.gfile.GFile(pipeline_config_path, "r") as f:
    proto_str = f.read()
    text_format.Merge(proto_str, pipeline_config)
95
  return create_configs_from_pipeline_proto(pipeline_config)
96

97
98
99
100
101
102
103
104
105
106
107
108

def create_configs_from_pipeline_proto(pipeline_config):
  """Creates a configs dictionary from pipeline_pb2.TrainEvalPipelineConfig.

  Args:
    pipeline_config: pipeline_pb2.TrainEvalPipelineConfig proto object.

  Returns:
    Dictionary of configuration objects. Keys are `model`, `train_config`,
      `train_input_config`, `eval_config`, `eval_input_config`. Value are the
      corresponding config objects.
  """
109
110
111
112
113
114
  configs = {}
  configs["model"] = pipeline_config.model
  configs["train_config"] = pipeline_config.train_config
  configs["train_input_config"] = pipeline_config.train_input_reader
  configs["eval_config"] = pipeline_config.eval_config
  configs["eval_input_config"] = pipeline_config.eval_input_reader
115
116
117
  if pipeline_config.HasField("graph_rewriter"):
    configs["graph_rewriter_config"] = pipeline_config.graph_rewriter

118
119
120
  return configs


121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
def get_graph_rewriter_config_from_file(graph_rewriter_config_file):
  """Parses config for graph rewriter.

  Args:
    graph_rewriter_config_file: file path to the graph rewriter config.

  Returns:
    graph_rewriter_pb2.GraphRewriter proto
  """
  graph_rewriter_config = graph_rewriter_pb2.GraphRewriter()
  with tf.gfile.GFile(graph_rewriter_config_file, "r") as f:
    text_format.Merge(f.read(), graph_rewriter_config)
  return graph_rewriter_config


136
137
138
def create_pipeline_proto_from_configs(configs):
  """Creates a pipeline_pb2.TrainEvalPipelineConfig from configs dictionary.

139
140
  This function performs the inverse operation of
  create_configs_from_pipeline_proto().
141
142
143
144
145
146
147
148
149
150
151
152
153

  Args:
    configs: Dictionary of configs. See get_configs_from_pipeline_file().

  Returns:
    A fully populated pipeline_pb2.TrainEvalPipelineConfig.
  """
  pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
  pipeline_config.model.CopyFrom(configs["model"])
  pipeline_config.train_config.CopyFrom(configs["train_config"])
  pipeline_config.train_input_reader.CopyFrom(configs["train_input_config"])
  pipeline_config.eval_config.CopyFrom(configs["eval_config"])
  pipeline_config.eval_input_reader.CopyFrom(configs["eval_input_config"])
154
155
  if "graph_rewriter_config" in configs:
    pipeline_config.graph_rewriter.CopyFrom(configs["graph_rewriter_config"])
156
157
158
  return pipeline_config


159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
def save_pipeline_config(pipeline_config, directory):
  """Saves a pipeline config text file to disk.

  Args:
    pipeline_config: A pipeline_pb2.TrainEvalPipelineConfig.
    directory: The model directory into which the pipeline config file will be
      saved.
  """
  if not file_io.file_exists(directory):
    file_io.recursive_create_dir(directory)
  pipeline_config_path = os.path.join(directory, "pipeline.config")
  config_text = text_format.MessageToString(pipeline_config)
  with tf.gfile.Open(pipeline_config_path, "wb") as f:
    tf.logging.info("Writing pipeline config file to %s",
                    pipeline_config_path)
    f.write(config_text)


177
178
179
180
def get_configs_from_multiple_files(model_config_path="",
                                    train_config_path="",
                                    train_input_config_path="",
                                    eval_config_path="",
181
182
                                    eval_input_config_path="",
                                    graph_rewriter_config_path=""):
183
184
185
186
187
188
189
190
  """Reads training configuration from multiple config files.

  Args:
    model_config_path: Path to model_pb2.DetectionModel.
    train_config_path: Path to train_pb2.TrainConfig.
    train_input_config_path: Path to input_reader_pb2.InputReader.
    eval_config_path: Path to eval_pb2.EvalConfig.
    eval_input_config_path: Path to input_reader_pb2.InputReader.
191
    graph_rewriter_config_path: Path to graph_rewriter_pb2.GraphRewriter.
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

  Returns:
    Dictionary of configuration objects. Keys are `model`, `train_config`,
      `train_input_config`, `eval_config`, `eval_input_config`. Key/Values are
        returned only for valid (non-empty) strings.
  """
  configs = {}
  if model_config_path:
    model_config = model_pb2.DetectionModel()
    with tf.gfile.GFile(model_config_path, "r") as f:
      text_format.Merge(f.read(), model_config)
      configs["model"] = model_config

  if train_config_path:
    train_config = train_pb2.TrainConfig()
    with tf.gfile.GFile(train_config_path, "r") as f:
      text_format.Merge(f.read(), train_config)
      configs["train_config"] = train_config

  if train_input_config_path:
    train_input_config = input_reader_pb2.InputReader()
    with tf.gfile.GFile(train_input_config_path, "r") as f:
      text_format.Merge(f.read(), train_input_config)
      configs["train_input_config"] = train_input_config

  if eval_config_path:
    eval_config = eval_pb2.EvalConfig()
    with tf.gfile.GFile(eval_config_path, "r") as f:
      text_format.Merge(f.read(), eval_config)
      configs["eval_config"] = eval_config

  if eval_input_config_path:
    eval_input_config = input_reader_pb2.InputReader()
    with tf.gfile.GFile(eval_input_config_path, "r") as f:
      text_format.Merge(f.read(), eval_input_config)
      configs["eval_input_config"] = eval_input_config

229
230
231
232
  if graph_rewriter_config_path:
    configs["graph_rewriter_config"] = get_graph_rewriter_config_from_file(
        graph_rewriter_config_path)

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
  return configs


def get_number_of_classes(model_config):
  """Returns the number of classes for a detection model.

  Args:
    model_config: A model_pb2.DetectionModel.

  Returns:
    Number of classes.

  Raises:
    ValueError: If the model type is not recognized.
  """
  meta_architecture = model_config.WhichOneof("model")
  if meta_architecture == "faster_rcnn":
    return model_config.faster_rcnn.num_classes
  if meta_architecture == "ssd":
    return model_config.ssd.num_classes

  raise ValueError("Expected the model to be one of 'faster_rcnn' or 'ssd'.")


def get_optimizer_type(train_config):
  """Returns the optimizer type for training.

  Args:
    train_config: A train_pb2.TrainConfig.

  Returns:
    The type of the optimizer
  """
  return train_config.optimizer.WhichOneof("optimizer")


def get_learning_rate_type(optimizer_config):
  """Returns the learning rate type for training.

  Args:
    optimizer_config: An optimizer_pb2.Optimizer.

  Returns:
    The type of the learning rate.
  """
  return optimizer_config.learning_rate.WhichOneof("learning_rate")


281
282
283
284
285
286
287
288
289
290
291
292
293
def _is_generic_key(key):
  """Determines whether the key starts with a generic config dictionary key."""
  for prefix in [
      "graph_rewriter_config",
      "model",
      "train_input_config",
      "train_input_config",
      "train_config"]:
    if key.startswith(prefix + "."):
      return True
  return False


294
295
296
297
298
299
300
301
302
def merge_external_params_with_configs(configs, hparams=None, **kwargs):
  """Updates `configs` dictionary based on supplied parameters.

  This utility is for modifying specific fields in the object detection configs.
  Say that one would like to experiment with different learning rates, momentum
  values, or batch sizes. Rather than creating a new config text file for each
  experiment, one can use a single base config file, and update particular
  values.

303
304
305
306
307
308
309
310
311
312
  There are two types of field overrides:
  1. Strategy-based overrides, which update multiple relevant configuration
  options. For example, updating `learning_rate` will update both the warmup and
  final learning rates.
  2. Generic key/value, which update a specific parameter based on namespaced
  configuration keys. For example,
  `model.ssd.loss.hard_example_miner.max_negatives_per_positive` will update the
  hard example miner configuration for an SSD model config. Generic overrides
  are automatically detected based on the namespaced keys.

313
314
315
316
317
318
319
320
321
322
323
324
325
326
  Args:
    configs: Dictionary of configuration objects. See outputs from
      get_configs_from_pipeline_file() or get_configs_from_multiple_files().
    hparams: A `HParams`.
    **kwargs: Extra keyword arguments that are treated the same way as
      attribute/value pairs in `hparams`. Note that hyperparameters with the
      same names will override keyword arguments.

  Returns:
    `configs` dictionary.
  """

  if hparams:
    kwargs.update(hparams.values())
Vivek Rathod's avatar
Vivek Rathod committed
327
  for key, value in kwargs.items():
328
    tf.logging.info("Maybe overwriting %s: %s", key, value)
329
330
331
332
    # pylint: disable=g-explicit-bool-comparison
    if value == "" or value is None:
      continue
    # pylint: enable=g-explicit-bool-comparison
333
334
    if key == "learning_rate":
      _update_initial_learning_rate(configs, value)
335
    elif key == "batch_size":
336
      _update_batch_size(configs, value)
337
    elif key == "momentum_optimizer_value":
338
      _update_momentum_optimizer_value(configs, value)
339
    elif key == "classification_localization_weight_ratio":
340
341
      # Localization weight is fixed to 1.0.
      _update_classification_localization_weight_ratio(configs, value)
342
    elif key == "focal_loss_gamma":
343
      _update_focal_loss_gamma(configs, value)
344
    elif key == "focal_loss_alpha":
345
      _update_focal_loss_alpha(configs, value)
346
    elif key == "train_steps":
347
      _update_train_steps(configs, value)
348
    elif key == "eval_steps":
349
      _update_eval_steps(configs, value)
350
    elif key == "train_input_path":
351
      _update_input_path(configs["train_input_config"], value)
352
    elif key == "eval_input_path":
353
      _update_input_path(configs["eval_input_config"], value)
354
    elif key == "label_map_path":
355
      _update_label_map_path(configs, value)
356
    elif key == "mask_type":
357
      _update_mask_type(configs, value)
358
359
360
361
362
363
    elif key == "eval_with_moving_averages":
      _update_use_moving_averages(configs, value)
    elif _is_generic_key(key):
      _update_generic(configs, key, value)
    else:
      tf.logging.info("Ignoring config override key: %s", key)
364
365
366
367
368
369
  return configs


def _update_initial_learning_rate(configs, learning_rate):
  """Updates `configs` to reflect the new initial learning rate.

370
371
372
  This function updates the initial learning rate. For learning rate schedules,
  all other defined learning rates in the pipeline config are scaled to maintain
  their same ratio with the initial learning rate.
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
  The configs dictionary is updated in place, and hence not returned.

  Args:
    configs: Dictionary of configuration objects. See outputs from
      get_configs_from_pipeline_file() or get_configs_from_multiple_files().
    learning_rate: Initial learning rate for optimizer.

  Raises:
    TypeError: if optimizer type is not supported, or if learning rate type is
      not supported.
  """

  optimizer_type = get_optimizer_type(configs["train_config"])
  if optimizer_type == "rms_prop_optimizer":
    optimizer_config = configs["train_config"].optimizer.rms_prop_optimizer
  elif optimizer_type == "momentum_optimizer":
    optimizer_config = configs["train_config"].optimizer.momentum_optimizer
  elif optimizer_type == "adam_optimizer":
    optimizer_config = configs["train_config"].optimizer.adam_optimizer
  else:
    raise TypeError("Optimizer %s is not supported." % optimizer_type)

  learning_rate_type = get_learning_rate_type(optimizer_config)
  if learning_rate_type == "constant_learning_rate":
    constant_lr = optimizer_config.learning_rate.constant_learning_rate
    constant_lr.learning_rate = learning_rate
  elif learning_rate_type == "exponential_decay_learning_rate":
    exponential_lr = (
        optimizer_config.learning_rate.exponential_decay_learning_rate)
    exponential_lr.initial_learning_rate = learning_rate
  elif learning_rate_type == "manual_step_learning_rate":
    manual_lr = optimizer_config.learning_rate.manual_step_learning_rate
    original_learning_rate = manual_lr.initial_learning_rate
    learning_rate_scaling = float(learning_rate) / original_learning_rate
    manual_lr.initial_learning_rate = learning_rate
    for schedule in manual_lr.schedule:
      schedule.learning_rate *= learning_rate_scaling
410
411
412
413
414
415
416
  elif learning_rate_type == "cosine_decay_learning_rate":
    cosine_lr = optimizer_config.learning_rate.cosine_decay_learning_rate
    learning_rate_base = cosine_lr.learning_rate_base
    warmup_learning_rate = cosine_lr.warmup_learning_rate
    warmup_scale_factor = warmup_learning_rate / learning_rate_base
    cosine_lr.learning_rate_base = learning_rate
    cosine_lr.warmup_learning_rate = warmup_scale_factor * learning_rate
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
  else:
    raise TypeError("Learning rate %s is not supported." % learning_rate_type)


def _update_batch_size(configs, batch_size):
  """Updates `configs` to reflect the new training batch size.

  The configs dictionary is updated in place, and hence not returned.

  Args:
    configs: Dictionary of configuration objects. See outputs from
      get_configs_from_pipeline_file() or get_configs_from_multiple_files().
    batch_size: Batch size to use for training (Ideally a power of 2). Inputs
      are rounded, and capped to be 1 or greater.
  """
  configs["train_config"].batch_size = max(1, int(round(batch_size)))


435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
def _validate_message_has_field(message, field):
  if not message.HasField(field):
    raise ValueError("Expecting message to have field %s" % field)


def _update_generic(configs, key, value):
  """Update a pipeline configuration parameter based on a generic key/value.

  Args:
    configs: Dictionary of pipeline configuration protos.
    key: A string key, dot-delimited to represent the argument key.
      e.g. "model.ssd.train_config.batch_size"
    value: A value to set the argument to. The type of the value must match the
      type for the protocol buffer. Note that setting the wrong type will
      result in a TypeError.
      e.g. 42

  Raises:
    ValueError if the message key does not match the existing proto fields.
    TypeError the value type doesn't match the protobuf field type.
  """
  fields = key.split(".")
  first_field = fields.pop(0)
  last_field = fields.pop()
  message = configs[first_field]
  for field in fields:
    _validate_message_has_field(message, field)
    message = getattr(message, field)
  _validate_message_has_field(message, last_field)
  setattr(message, last_field, value)


467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
def _update_momentum_optimizer_value(configs, momentum):
  """Updates `configs` to reflect the new momentum value.

  Momentum is only supported for RMSPropOptimizer and MomentumOptimizer. For any
  other optimizer, no changes take place. The configs dictionary is updated in
  place, and hence not returned.

  Args:
    configs: Dictionary of configuration objects. See outputs from
      get_configs_from_pipeline_file() or get_configs_from_multiple_files().
    momentum: New momentum value. Values are clipped at 0.0 and 1.0.

  Raises:
    TypeError: If the optimizer type is not `rms_prop_optimizer` or
    `momentum_optimizer`.
  """
  optimizer_type = get_optimizer_type(configs["train_config"])
  if optimizer_type == "rms_prop_optimizer":
    optimizer_config = configs["train_config"].optimizer.rms_prop_optimizer
  elif optimizer_type == "momentum_optimizer":
    optimizer_config = configs["train_config"].optimizer.momentum_optimizer
  else:
    raise TypeError("Optimizer type must be one of `rms_prop_optimizer` or "
                    "`momentum_optimizer`.")

  optimizer_config.momentum_optimizer_value = min(max(0.0, momentum), 1.0)


def _update_classification_localization_weight_ratio(configs, ratio):
  """Updates the classification/localization weight loss ratio.

  Detection models usually define a loss weight for both classification and
  objectness. This function updates the weights such that the ratio between
  classification weight to localization weight is the ratio provided.
  Arbitrarily, localization weight is set to 1.0.

  Note that in the case of Faster R-CNN, this same ratio is applied to the first
  stage objectness loss weight relative to localization loss weight.

  The configs dictionary is updated in place, and hence not returned.

  Args:
    configs: Dictionary of configuration objects. See outputs from
      get_configs_from_pipeline_file() or get_configs_from_multiple_files().
    ratio: Desired ratio of classification (and/or objectness) loss weight to
      localization loss weight.
  """
  meta_architecture = configs["model"].WhichOneof("model")
  if meta_architecture == "faster_rcnn":
    model = configs["model"].faster_rcnn
    model.first_stage_localization_loss_weight = 1.0
    model.first_stage_objectness_loss_weight = ratio
    model.second_stage_localization_loss_weight = 1.0
    model.second_stage_classification_loss_weight = ratio
  if meta_architecture == "ssd":
    model = configs["model"].ssd
    model.loss.localization_weight = 1.0
    model.loss.classification_weight = ratio


def _get_classification_loss(model_config):
  """Returns the classification loss for a model."""
  meta_architecture = model_config.WhichOneof("model")
  if meta_architecture == "faster_rcnn":
    model = model_config.faster_rcnn
    classification_loss = model.second_stage_classification_loss
533
  elif meta_architecture == "ssd":
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
    model = model_config.ssd
    classification_loss = model.loss.classification_loss
  else:
    raise TypeError("Did not recognize the model architecture.")
  return classification_loss


def _update_focal_loss_gamma(configs, gamma):
  """Updates the gamma value for a sigmoid focal loss.

  The configs dictionary is updated in place, and hence not returned.

  Args:
    configs: Dictionary of configuration objects. See outputs from
      get_configs_from_pipeline_file() or get_configs_from_multiple_files().
    gamma: Exponent term in focal loss.

  Raises:
    TypeError: If the classification loss is not `weighted_sigmoid_focal`.
  """
  classification_loss = _get_classification_loss(configs["model"])
  classification_loss_type = classification_loss.WhichOneof(
      "classification_loss")
  if classification_loss_type != "weighted_sigmoid_focal":
    raise TypeError("Classification loss must be `weighted_sigmoid_focal`.")
  classification_loss.weighted_sigmoid_focal.gamma = gamma


def _update_focal_loss_alpha(configs, alpha):
  """Updates the alpha value for a sigmoid focal loss.

  The configs dictionary is updated in place, and hence not returned.

  Args:
    configs: Dictionary of configuration objects. See outputs from
      get_configs_from_pipeline_file() or get_configs_from_multiple_files().
    alpha: Class weight multiplier for sigmoid loss.

  Raises:
    TypeError: If the classification loss is not `weighted_sigmoid_focal`.
  """
  classification_loss = _get_classification_loss(configs["model"])
  classification_loss_type = classification_loss.WhichOneof(
      "classification_loss")
  if classification_loss_type != "weighted_sigmoid_focal":
    raise TypeError("Classification loss must be `weighted_sigmoid_focal`.")
  classification_loss.weighted_sigmoid_focal.alpha = alpha


def _update_train_steps(configs, train_steps):
  """Updates `configs` to reflect new number of training steps."""
  configs["train_config"].num_steps = int(train_steps)


def _update_eval_steps(configs, eval_steps):
  """Updates `configs` to reflect new number of eval steps per evaluation."""
  configs["eval_config"].num_examples = int(eval_steps)


def _update_input_path(input_config, input_path):
  """Updates input configuration to reflect a new input path.

  The input_config object is updated in place, and hence not returned.

  Args:
    input_config: A input_reader_pb2.InputReader.
    input_path: A path to data or list of paths.

  Raises:
    TypeError: if input reader type is not `tf_record_input_reader`.
  """
  input_reader_type = input_config.WhichOneof("input_reader")
  if input_reader_type == "tf_record_input_reader":
    input_config.tf_record_input_reader.ClearField("input_path")
    if isinstance(input_path, list):
      input_config.tf_record_input_reader.input_path.extend(input_path)
    else:
      input_config.tf_record_input_reader.input_path.append(input_path)
  else:
    raise TypeError("Input reader type must be `tf_record_input_reader`.")


def _update_label_map_path(configs, label_map_path):
  """Updates the label map path for both train and eval input readers.

  The configs dictionary is updated in place, and hence not returned.

  Args:
    configs: Dictionary of configuration objects. See outputs from
      get_configs_from_pipeline_file() or get_configs_from_multiple_files().
    label_map_path: New path to `StringIntLabelMap` pbtxt file.
  """
  configs["train_input_config"].label_map_path = label_map_path
  configs["eval_input_config"].label_map_path = label_map_path
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642


def _update_mask_type(configs, mask_type):
  """Updates the mask type for both train and eval input readers.

  The configs dictionary is updated in place, and hence not returned.

  Args:
    configs: Dictionary of configuration objects. See outputs from
      get_configs_from_pipeline_file() or get_configs_from_multiple_files().
    mask_type: A string name representing a value of
      input_reader_pb2.InstanceMaskType
  """
  configs["train_input_config"].mask_type = mask_type
  configs["eval_input_config"].mask_type = mask_type
643
644
645
646
647
648
649
650
651
652
653
654
655
656


def _update_use_moving_averages(configs, use_moving_averages):
  """Updates the eval config option to use or not use moving averages.

  The configs dictionary is updated in place, and hence not returned.

  Args:
    configs: Dictionary of configuration objects. See outputs from
      get_configs_from_pipeline_file() or get_configs_from_multiple_files().
    use_moving_averages: Boolean indicating whether moving average variables
      should be loaded during evaluation.
  """
  configs["eval_config"].use_moving_averages = use_moving_averages