classification_model.py 4.5 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

Abdullah Rashwan's avatar
Abdullah Rashwan committed
15
16
"""Build classification models."""

Fan Yang's avatar
Fan Yang committed
17
from typing import Any, Mapping, Optional
Abdullah Rashwan's avatar
Abdullah Rashwan committed
18
19
20
21
22
23
24
25
26
27
# Import libraries
import tensorflow as tf

layers = tf.keras.layers


@tf.keras.utils.register_keras_serializable(package='Vision')
class ClassificationModel(tf.keras.Model):
  """A classification class builder."""

Fan Yang's avatar
Fan Yang committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
  def __init__(
      self,
      backbone: tf.keras.Model,
      num_classes: int,
      input_specs: tf.keras.layers.InputSpec = layers.InputSpec(
          shape=[None, None, None, 3]),
      dropout_rate: float = 0.0,
      kernel_initializer: str = 'random_uniform',
      kernel_regularizer: Optional[tf.keras.regularizers.Regularizer] = None,
      bias_regularizer: Optional[tf.keras.regularizers.Regularizer] = None,
      add_head_batch_norm: bool = False,
      use_sync_bn: bool = False,
      norm_momentum: float = 0.99,
      norm_epsilon: float = 0.001,
      skip_logits_layer: bool = False,
      **kwargs):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
    """Classification initialization function.

    Args:
      backbone: a backbone network.
      num_classes: `int` number of classes in classification task.
      input_specs: `tf.keras.layers.InputSpec` specs of the input tensor.
      dropout_rate: `float` rate for dropout regularization.
      kernel_initializer: kernel initializer for the dense layer.
      kernel_regularizer: tf.keras.regularizers.Regularizer object. Default to
                          None.
      bias_regularizer: tf.keras.regularizers.Regularizer object. Default to
                          None.
      add_head_batch_norm: `bool` whether to add a batch normalization layer
        before pool.
      use_sync_bn: `bool` if True, use synchronized batch normalization.
      norm_momentum: `float` normalization momentum for the moving average.
      norm_epsilon: `float` small float added to variance to avoid dividing by
        zero.
Pengchong Jin's avatar
Pengchong Jin committed
62
      skip_logits_layer: `bool`, whether to skip the prediction layer.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
63
64
65
      **kwargs: keyword arguments to be passed.
    """
    if use_sync_bn:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
66
      norm = tf.keras.layers.experimental.SyncBatchNormalization
Abdullah Rashwan's avatar
Abdullah Rashwan committed
67
    else:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
68
      norm = tf.keras.layers.BatchNormalization
Abdullah Rashwan's avatar
Abdullah Rashwan committed
69
70
    axis = -1 if tf.keras.backend.image_data_format() == 'channels_last' else 1

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
71
    inputs = tf.keras.Input(shape=input_specs.shape[1:], name=input_specs.name)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
72
73
74
75
    endpoints = backbone(inputs)
    x = endpoints[max(endpoints.keys())]

    if add_head_batch_norm:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
76
      x = norm(axis=axis, momentum=norm_momentum, epsilon=norm_epsilon)(x)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
77
    x = tf.keras.layers.GlobalAveragePooling2D()(x)
Pengchong Jin's avatar
Pengchong Jin committed
78
79
80
    if not skip_logits_layer:
      x = tf.keras.layers.Dropout(dropout_rate)(x)
      x = tf.keras.layers.Dense(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
81
82
83
84
          num_classes,
          kernel_initializer=kernel_initializer,
          kernel_regularizer=kernel_regularizer,
          bias_regularizer=bias_regularizer)(
Pengchong Jin's avatar
Pengchong Jin committed
85
              x)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
86
87
88

    super(ClassificationModel, self).__init__(
        inputs=inputs, outputs=x, **kwargs)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
    self._config_dict = {
        'backbone': backbone,
        'num_classes': num_classes,
        'input_specs': input_specs,
        'dropout_rate': dropout_rate,
        'kernel_initializer': kernel_initializer,
        'kernel_regularizer': kernel_regularizer,
        'bias_regularizer': bias_regularizer,
        'add_head_batch_norm': add_head_batch_norm,
        'use_sync_bn': use_sync_bn,
        'norm_momentum': norm_momentum,
        'norm_epsilon': norm_epsilon,
    }
    self._input_specs = input_specs
    self._kernel_regularizer = kernel_regularizer
    self._bias_regularizer = bias_regularizer
    self._backbone = backbone
    self._norm = norm
Abdullah Rashwan's avatar
Abdullah Rashwan committed
107
108

  @property
Fan Yang's avatar
Fan Yang committed
109
  def checkpoint_items(self) -> Mapping[str, tf.keras.Model]:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
110
111
112
113
    """Returns a dictionary of items to be additionally checkpointed."""
    return dict(backbone=self.backbone)

  @property
Fan Yang's avatar
Fan Yang committed
114
  def backbone(self) -> tf.keras.Model:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
115
116
    return self._backbone

Fan Yang's avatar
Fan Yang committed
117
  def get_config(self) -> Mapping[str, Any]:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
118
119
120
121
122
    return self._config_dict

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)