spinenet.py 20.4 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

Fan Yang's avatar
Fan Yang committed
15
"""Contains definitions of SpineNet Networks."""
Fan Yang's avatar
Fan Yang committed
16

Abdullah Rashwan's avatar
Abdullah Rashwan committed
17
import math
Fan Yang's avatar
Fan Yang committed
18
from typing import Any, List, Optional, Tuple
Abdullah Rashwan's avatar
Abdullah Rashwan committed
19
20

# Import libraries
Fan Yang's avatar
Fan Yang committed
21

Abdullah Rashwan's avatar
Abdullah Rashwan committed
22
23
from absl import logging
import tensorflow as tf
Fan Yang's avatar
Fan Yang committed
24

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
25
from official.modeling import hyperparams
Abdullah Rashwan's avatar
Abdullah Rashwan committed
26
from official.modeling import tf_utils
Yeqing Li's avatar
Yeqing Li committed
27
from official.vision.beta.modeling.backbones import factory
Abdullah Rashwan's avatar
Abdullah Rashwan committed
28
from official.vision.beta.modeling.layers import nn_blocks
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
29
from official.vision.beta.modeling.layers import nn_layers
Abdullah Rashwan's avatar
Abdullah Rashwan committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from official.vision.beta.ops import spatial_transform_ops

layers = tf.keras.layers

FILTER_SIZE_MAP = {
    1: 32,
    2: 64,
    3: 128,
    4: 256,
    5: 256,
    6: 256,
    7: 256,
}

# The fixed SpineNet architecture discovered by NAS.
# Each element represents a specification of a building block:
#   (block_level, block_fn, (input_offset0, input_offset1), is_output).
SPINENET_BLOCK_SPECS = [
    (2, 'bottleneck', (0, 1), False),
    (4, 'residual', (0, 1), False),
    (3, 'bottleneck', (2, 3), False),
    (4, 'bottleneck', (2, 4), False),
    (6, 'residual', (3, 5), False),
    (4, 'bottleneck', (3, 5), False),
    (5, 'residual', (6, 7), False),
    (7, 'residual', (6, 8), False),
    (5, 'bottleneck', (8, 9), False),
    (5, 'bottleneck', (8, 10), False),
    (4, 'bottleneck', (5, 10), True),
    (3, 'bottleneck', (4, 10), True),
    (5, 'bottleneck', (7, 12), True),
    (7, 'bottleneck', (5, 14), True),
    (6, 'bottleneck', (12, 14), True),
Xianzhi Du's avatar
Xianzhi Du committed
63
    (2, 'bottleneck', (2, 13), True),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
]

SCALING_MAP = {
    '49S': {
        'endpoints_num_filters': 128,
        'filter_size_scale': 0.65,
        'resample_alpha': 0.5,
        'block_repeats': 1,
    },
    '49': {
        'endpoints_num_filters': 256,
        'filter_size_scale': 1.0,
        'resample_alpha': 0.5,
        'block_repeats': 1,
    },
    '96': {
        'endpoints_num_filters': 256,
        'filter_size_scale': 1.0,
        'resample_alpha': 0.5,
        'block_repeats': 2,
    },
    '143': {
        'endpoints_num_filters': 256,
        'filter_size_scale': 1.0,
        'resample_alpha': 1.0,
        'block_repeats': 3,
    },
91
92
93
94
95
96
97
    # SpineNet-143 with 1.3x filter_size_scale.
    '143L': {
        'endpoints_num_filters': 256,
        'filter_size_scale': 1.3,
        'resample_alpha': 1.0,
        'block_repeats': 3,
    },
Abdullah Rashwan's avatar
Abdullah Rashwan committed
98
99
100
101
102
103
104
105
106
107
108
109
    '190': {
        'endpoints_num_filters': 512,
        'filter_size_scale': 1.3,
        'resample_alpha': 1.0,
        'block_repeats': 4,
    },
}


class BlockSpec(object):
  """A container class that specifies the block configuration for SpineNet."""

Fan Yang's avatar
Fan Yang committed
110
111
  def __init__(self, level: int, block_fn: str, input_offsets: Tuple[int, int],
               is_output: bool):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
112
113
114
115
116
117
    self.level = level
    self.block_fn = block_fn
    self.input_offsets = input_offsets
    self.is_output = is_output


Fan Yang's avatar
Fan Yang committed
118
119
def build_block_specs(
    block_specs: Optional[List[Tuple[Any, ...]]] = None) -> List[BlockSpec]:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
120
121
122
123
124
125
126
127
128
  """Builds the list of BlockSpec objects for SpineNet."""
  if not block_specs:
    block_specs = SPINENET_BLOCK_SPECS
  logging.info('Building SpineNet block specs: %s', block_specs)
  return [BlockSpec(*b) for b in block_specs]


@tf.keras.utils.register_keras_serializable(package='Vision')
class SpineNet(tf.keras.Model):
Fan Yang's avatar
Fan Yang committed
129
130
131
132
133
134
135
136
  """Creates a SpineNet family model.

  This implements:
    Xianzhi Du, Tsung-Yi Lin, Pengchong Jin, Golnaz Ghiasi, Mingxing Tan,
    Yin Cui, Quoc V. Le, Xiaodan Song.
    SpineNet: Learning Scale-Permuted Backbone for Recognition and Localization.
    (https://arxiv.org/abs/1912.05027)
  """
Abdullah Rashwan's avatar
Abdullah Rashwan committed
137

Fan Yang's avatar
Fan Yang committed
138
139
140
  def __init__(
      self,
      input_specs: tf.keras.layers.InputSpec = tf.keras.layers.InputSpec(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
141
          shape=[None, None, None, 3]),
Fan Yang's avatar
Fan Yang committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
      min_level: int = 3,
      max_level: int = 7,
      block_specs: List[BlockSpec] = build_block_specs(),
      endpoints_num_filters: int = 256,
      resample_alpha: float = 0.5,
      block_repeats: int = 1,
      filter_size_scale: float = 1.0,
      init_stochastic_depth_rate: float = 0.0,
      kernel_initializer: str = 'VarianceScaling',
      kernel_regularizer: Optional[tf.keras.regularizers.Regularizer] = None,
      bias_regularizer: Optional[tf.keras.regularizers.Regularizer] = None,
      activation: str = 'relu',
      use_sync_bn: bool = False,
      norm_momentum: float = 0.99,
      norm_epsilon: float = 0.001,
      **kwargs):
Fan Yang's avatar
Fan Yang committed
158
159
160
161
162
163
    """Initializes a SpineNet model.

    Args:
      input_specs: A `tf.keras.layers.InputSpec` of the input tensor.
      min_level: An `int` of min level for output mutiscale features.
      max_level: An `int` of max level for output mutiscale features.
Fan Yang's avatar
Fan Yang committed
164
165
      block_specs: A list of block specifications for the SpineNet model
        discovered by NAS.
Fan Yang's avatar
Fan Yang committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
      endpoints_num_filters: An `int` of feature dimension for the output
        endpoints.
      resample_alpha: A `float` of resampling factor in cross-scale connections.
      block_repeats: An `int` of number of blocks contained in the layer.
      filter_size_scale: A `float` of multiplier for the filters (number of
        channels) for all convolution ops. The value must be greater than zero.
        Typical usage will be to set this value in (0, 1) to reduce the number
        of parameters or computation cost of the model.
      init_stochastic_depth_rate: A `float` of initial stochastic depth rate.
      kernel_initializer: A str for kernel initializer of convolutional layers.
      kernel_regularizer: A `tf.keras.regularizers.Regularizer` object for
        Conv2D. Default to None.
      bias_regularizer: A `tf.keras.regularizers.Regularizer` object for Conv2D.
        Default to None.
      activation: A `str` name of the activation function.
      use_sync_bn: If True, use synchronized batch normalization.
      norm_momentum: A `float` of normalization momentum for the moving average.
      norm_epsilon: A small `float` added to variance to avoid dividing by zero.
      **kwargs: Additional keyword arguments to be passed.
    """
Abdullah Rashwan's avatar
Abdullah Rashwan committed
186
187
188
189
190
191
192
193
    self._input_specs = input_specs
    self._min_level = min_level
    self._max_level = max_level
    self._block_specs = block_specs
    self._endpoints_num_filters = endpoints_num_filters
    self._resample_alpha = resample_alpha
    self._block_repeats = block_repeats
    self._filter_size_scale = filter_size_scale
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
194
    self._init_stochastic_depth_rate = init_stochastic_depth_rate
Abdullah Rashwan's avatar
Abdullah Rashwan committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
    self._kernel_initializer = kernel_initializer
    self._kernel_regularizer = kernel_regularizer
    self._bias_regularizer = bias_regularizer
    self._activation = activation
    self._use_sync_bn = use_sync_bn
    self._norm_momentum = norm_momentum
    self._norm_epsilon = norm_epsilon
    if activation == 'relu':
      self._activation_fn = tf.nn.relu
    elif activation == 'swish':
      self._activation_fn = tf.nn.swish
    else:
      raise ValueError('Activation {} not implemented.'.format(activation))
    self._init_block_fn = 'bottleneck'
    self._num_init_blocks = 2

    if use_sync_bn:
      self._norm = layers.experimental.SyncBatchNormalization
    else:
      self._norm = layers.BatchNormalization

    if tf.keras.backend.image_data_format() == 'channels_last':
      self._bn_axis = -1
    else:
      self._bn_axis = 1

    # Build SpineNet.
    inputs = tf.keras.Input(shape=input_specs.shape[1:])

    net = self._build_stem(inputs=inputs)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
225
226
227
228
229
    input_width = input_specs.shape[2]
    if input_width is None:
      max_stride = max(map(lambda b: b.level, block_specs))
      input_width = 2 ** max_stride
    net = self._build_scale_permuted_network(net=net, input_width=input_width)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
230
231
232
233
234
235
    endpoints = self._build_endpoints(net=net)

    self._output_specs = {l: endpoints[l].get_shape() for l in endpoints}
    super(SpineNet, self).__init__(inputs=inputs, outputs=endpoints)

  def _block_group(self,
Fan Yang's avatar
Fan Yang committed
236
237
238
239
240
241
242
                   inputs: tf.Tensor,
                   filters: int,
                   strides: int,
                   block_fn_cand: str,
                   block_repeats: int = 1,
                   stochastic_depth_drop_rate: Optional[float] = None,
                   name: str = 'block_group'):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
    """Creates one group of blocks for the SpineNet model."""
    block_fn_candidates = {
        'bottleneck': nn_blocks.BottleneckBlock,
        'residual': nn_blocks.ResidualBlock,
    }
    block_fn = block_fn_candidates[block_fn_cand]
    _, _, _, num_filters = inputs.get_shape().as_list()

    if block_fn_cand == 'bottleneck':
      use_projection = not (num_filters == (filters * 4) and strides == 1)
    else:
      use_projection = not (num_filters == filters and strides == 1)

    x = block_fn(
        filters=filters,
        strides=strides,
        use_projection=use_projection,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
260
        stochastic_depth_drop_rate=stochastic_depth_drop_rate,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
261
262
263
264
265
266
267
268
269
270
271
272
273
        kernel_initializer=self._kernel_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activation=self._activation,
        use_sync_bn=self._use_sync_bn,
        norm_momentum=self._norm_momentum,
        norm_epsilon=self._norm_epsilon)(
            inputs)
    for _ in range(1, block_repeats):
      x = block_fn(
          filters=filters,
          strides=1,
          use_projection=False,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
274
          stochastic_depth_drop_rate=stochastic_depth_drop_rate,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
275
276
277
278
279
280
281
282
283
284
285
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer,
          activation=self._activation,
          use_sync_bn=self._use_sync_bn,
          norm_momentum=self._norm_momentum,
          norm_epsilon=self._norm_epsilon)(
              x)
    return tf.identity(x, name=name)

  def _build_stem(self, inputs):
Fan Yang's avatar
Fan Yang committed
286
    """Builds SpineNet stem."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
    x = layers.Conv2D(
        filters=64,
        kernel_size=7,
        strides=2,
        use_bias=False,
        padding='same',
        kernel_initializer=self._kernel_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer)(
            inputs)
    x = self._norm(
        axis=self._bn_axis,
        momentum=self._norm_momentum,
        epsilon=self._norm_epsilon)(
            x)
    x = tf_utils.get_activation(self._activation_fn)(x)
    x = layers.MaxPool2D(pool_size=3, strides=2, padding='same')(x)

    net = []
    # Build the initial level 2 blocks.
    for i in range(self._num_init_blocks):
      x = self._block_group(
          inputs=x,
          filters=int(FILTER_SIZE_MAP[2] * self._filter_size_scale),
          strides=1,
          block_fn_cand=self._init_block_fn,
          block_repeats=self._block_repeats,
          name='stem_block_{}'.format(i + 1))
      net.append(x)
    return net

  def _build_scale_permuted_network(self,
                                    net,
                                    input_width,
                                    weighted_fusion=False):
Fan Yang's avatar
Fan Yang committed
322
    """Builds scale-permuted network."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
    net_sizes = [int(math.ceil(input_width / 2**2))] * len(net)
    net_block_fns = [self._init_block_fn] * len(net)
    num_outgoing_connections = [0] * len(net)

    endpoints = {}
    for i, block_spec in enumerate(self._block_specs):
      # Find out specs for the target block.
      target_width = int(math.ceil(input_width / 2**block_spec.level))
      target_num_filters = int(FILTER_SIZE_MAP[block_spec.level] *
                               self._filter_size_scale)
      target_block_fn = block_spec.block_fn

      # Resample then merge input0 and input1.
      parents = []
      input0 = block_spec.input_offsets[0]
      input1 = block_spec.input_offsets[1]

      x0 = self._resample_with_alpha(
          inputs=net[input0],
          input_width=net_sizes[input0],
          input_block_fn=net_block_fns[input0],
          target_width=target_width,
          target_num_filters=target_num_filters,
          target_block_fn=target_block_fn,
          alpha=self._resample_alpha)
      parents.append(x0)
      num_outgoing_connections[input0] += 1

      x1 = self._resample_with_alpha(
          inputs=net[input1],
          input_width=net_sizes[input1],
          input_block_fn=net_block_fns[input1],
          target_width=target_width,
          target_num_filters=target_num_filters,
          target_block_fn=target_block_fn,
          alpha=self._resample_alpha)
      parents.append(x1)
      num_outgoing_connections[input1] += 1

      # Merge 0 outdegree blocks to the output block.
      if block_spec.is_output:
        for j, (j_feat,
                j_connections) in enumerate(zip(net, num_outgoing_connections)):
          if j_connections == 0 and (j_feat.shape[2] == target_width and
                                     j_feat.shape[3] == x0.shape[3]):
            parents.append(j_feat)
            num_outgoing_connections[j] += 1

      # pylint: disable=g-direct-tensorflow-import
      if weighted_fusion:
        dtype = parents[0].dtype
        parent_weights = [
            tf.nn.relu(tf.cast(tf.Variable(1.0, name='block{}_fusion{}'.format(
                i, j)), dtype=dtype)) for j in range(len(parents))]
        weights_sum = tf.add_n(parent_weights)
        parents = [
            parents[i] * parent_weights[i] / (weights_sum + 0.0001)
            for i in range(len(parents))
        ]

      # Fuse all parent nodes then build a new block.
      x = tf_utils.get_activation(self._activation_fn)(tf.add_n(parents))
      x = self._block_group(
          inputs=x,
          filters=target_num_filters,
          strides=1,
          block_fn_cand=target_block_fn,
          block_repeats=self._block_repeats,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
391
392
          stochastic_depth_drop_rate=nn_layers.get_stochastic_depth_rate(
              self._init_stochastic_depth_rate, i + 1, len(self._block_specs)),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
393
394
395
396
397
398
399
400
401
402
403
404
405
406
          name='scale_permuted_block_{}'.format(i + 1))

      net.append(x)
      net_sizes.append(target_width)
      net_block_fns.append(target_block_fn)
      num_outgoing_connections.append(0)

      # Save output feats.
      if block_spec.is_output:
        if block_spec.level in endpoints:
          raise ValueError('Duplicate feats found for output level {}.'.format(
              block_spec.level))
        if (block_spec.level < self._min_level or
            block_spec.level > self._max_level):
Xianzhi Du's avatar
Xianzhi Du committed
407
408
409
410
          logging.warning(
              'SpineNet output level out of range [min_level, max_level] = '
              '[%s, %s] will not be used for further processing.',
              self._min_level, self._max_level)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
411
        endpoints[str(block_spec.level)] = x
Abdullah Rashwan's avatar
Abdullah Rashwan committed
412
413
414
415

    return endpoints

  def _build_endpoints(self, net):
Fan Yang's avatar
Fan Yang committed
416
    """Matches filter size for endpoints before sharing conv layers."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
417
418
419
420
421
422
423
424
425
426
    endpoints = {}
    for level in range(self._min_level, self._max_level + 1):
      x = layers.Conv2D(
          filters=self._endpoints_num_filters,
          kernel_size=1,
          strides=1,
          use_bias=False,
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer)(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
427
              net[str(level)])
Abdullah Rashwan's avatar
Abdullah Rashwan committed
428
429
430
431
432
433
      x = self._norm(
          axis=self._bn_axis,
          momentum=self._norm_momentum,
          epsilon=self._norm_epsilon)(
              x)
      x = tf_utils.get_activation(self._activation_fn)(x)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
434
      endpoints[str(level)] = x
Abdullah Rashwan's avatar
Abdullah Rashwan committed
435
436
437
438
439
440
441
442
443
444
    return endpoints

  def _resample_with_alpha(self,
                           inputs,
                           input_width,
                           input_block_fn,
                           target_width,
                           target_num_filters,
                           target_block_fn,
                           alpha=0.5):
Fan Yang's avatar
Fan Yang committed
445
    """Matches resolution and feature dimension."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
    _, _, _, input_num_filters = inputs.get_shape().as_list()
    if input_block_fn == 'bottleneck':
      input_num_filters /= 4
    new_num_filters = int(input_num_filters * alpha)

    x = layers.Conv2D(
        filters=new_num_filters,
        kernel_size=1,
        strides=1,
        use_bias=False,
        kernel_initializer=self._kernel_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer)(
            inputs)
    x = self._norm(
        axis=self._bn_axis,
        momentum=self._norm_momentum,
        epsilon=self._norm_epsilon)(
            x)
    x = tf_utils.get_activation(self._activation_fn)(x)

    # Spatial resampling.
    if input_width > target_width:
      x = layers.Conv2D(
          filters=new_num_filters,
          kernel_size=3,
          strides=2,
          padding='SAME',
          use_bias=False,
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer)(
              x)
      x = self._norm(
          axis=self._bn_axis,
          momentum=self._norm_momentum,
          epsilon=self._norm_epsilon)(
              x)
      x = tf_utils.get_activation(self._activation_fn)(x)
      input_width /= 2
      while input_width > target_width:
        x = layers.MaxPool2D(pool_size=3, strides=2, padding='SAME')(x)
        input_width /= 2
    elif input_width < target_width:
      scale = target_width // input_width
      x = spatial_transform_ops.nearest_upsampling(x, scale=scale)

    # Last 1x1 conv to match filter size.
    if target_block_fn == 'bottleneck':
      target_num_filters *= 4
    x = layers.Conv2D(
        filters=target_num_filters,
        kernel_size=1,
        strides=1,
        use_bias=False,
        kernel_initializer=self._kernel_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer)(
            x)
    x = self._norm(
        axis=self._bn_axis,
        momentum=self._norm_momentum,
        epsilon=self._norm_epsilon)(
            x)
    return x

  def get_config(self):
    config_dict = {
        'min_level': self._min_level,
        'max_level': self._max_level,
        'endpoints_num_filters': self._endpoints_num_filters,
        'resample_alpha': self._resample_alpha,
        'block_repeats': self._block_repeats,
        'filter_size_scale': self._filter_size_scale,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
520
        'init_stochastic_depth_rate': self._init_stochastic_depth_rate,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
        'kernel_initializer': self._kernel_initializer,
        'kernel_regularizer': self._kernel_regularizer,
        'bias_regularizer': self._bias_regularizer,
        'activation': self._activation,
        'use_sync_bn': self._use_sync_bn,
        'norm_momentum': self._norm_momentum,
        'norm_epsilon': self._norm_epsilon
    }
    return config_dict

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)

  @property
  def output_specs(self):
    """A dict of {level: TensorShape} pairs for the model output."""
    return self._output_specs
Yeqing Li's avatar
Yeqing Li committed
539
540
541
542
543


@factory.register_backbone_builder('spinenet')
def build_spinenet(
    input_specs: tf.keras.layers.InputSpec,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
544
545
    backbone_config: hyperparams.Config,
    norm_activation_config: hyperparams.Config,
Yeqing Li's avatar
Yeqing Li committed
546
    l2_regularizer: tf.keras.regularizers.Regularizer = None) -> tf.keras.Model:
Fan Yang's avatar
Fan Yang committed
547
  """Builds SpineNet backbone from a config."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
548
549
  backbone_type = backbone_config.type
  backbone_cfg = backbone_config.get()
Yeqing Li's avatar
Yeqing Li committed
550
551
552
553
554
555
556
557
558
559
560
  assert backbone_type == 'spinenet', (f'Inconsistent backbone type '
                                       f'{backbone_type}')

  model_id = backbone_cfg.model_id
  if model_id not in SCALING_MAP:
    raise ValueError(
        'SpineNet-{} is not a valid architecture.'.format(model_id))
  scaling_params = SCALING_MAP[model_id]

  return SpineNet(
      input_specs=input_specs,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
561
562
      min_level=backbone_cfg.min_level,
      max_level=backbone_cfg.max_level,
Yeqing Li's avatar
Yeqing Li committed
563
564
565
566
      endpoints_num_filters=scaling_params['endpoints_num_filters'],
      resample_alpha=scaling_params['resample_alpha'],
      block_repeats=scaling_params['block_repeats'],
      filter_size_scale=scaling_params['filter_size_scale'],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
567
      init_stochastic_depth_rate=backbone_cfg.stochastic_depth_drop_rate,
Yeqing Li's avatar
Yeqing Li committed
568
569
570
571
572
      kernel_regularizer=l2_regularizer,
      activation=norm_activation_config.activation,
      use_sync_bn=norm_activation_config.use_sync_bn,
      norm_momentum=norm_activation_config.norm_momentum,
      norm_epsilon=norm_activation_config.norm_epsilon)