iou.py 4.49 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Zhenyu Tan's avatar
Zhenyu Tan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

Zhenyu Tan's avatar
Zhenyu Tan committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
"""IOU Metrics used for semantic segmentation models."""

import numpy as np
import tensorflow as tf


class PerClassIoU(tf.keras.metrics.Metric):
  """Computes the per-class Intersection-Over-Union metric.

  Mean Intersection-Over-Union is a common evaluation metric for semantic image
  segmentation, which first computes the IOU for each semantic class.
  IOU is defined as follows:
    IOU = true_positive / (true_positive + false_positive + false_negative).
  The predictions are accumulated in a confusion matrix, weighted by
  `sample_weight` and the metric is then calculated from it.

  If `sample_weight` is `None`, weights default to 1.
  Use `sample_weight` of 0 to mask values.

  Example:

  >>> # cm = [[1, 1],
  >>> #        [1, 1]]
  >>> # sum_row = [2, 2], sum_col = [2, 2], true_positives = [1, 1]
  >>> # iou = true_positives / (sum_row + sum_col - true_positives))
  >>> # result = [(1 / (2 + 2 - 1), 1 / (2 + 2 - 1)] = 0.33
  >>> m = tf.keras.metrics.MeanIoU(num_classes=2)
  >>> m.update_state([0, 0, 1, 1], [0, 1, 0, 1])
  >>> m.result().numpy()
  [0.33333334, 0.33333334]

  """

  def __init__(self, num_classes, name=None, dtype=None):
    """Initializes `PerClassIoU`.

51
    Args:
Zhenyu Tan's avatar
Zhenyu Tan committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
      num_classes: The possible number of labels the prediction task can have.
        This value must be provided, since a confusion matrix of dimension =
        [num_classes, num_classes] will be allocated.
      name: (Optional) string name of the metric instance.
      dtype: (Optional) data type of the metric result.

    """

    super(PerClassIoU, self).__init__(name=name, dtype=dtype)
    self.num_classes = num_classes

    # Variable to accumulate the predictions in the confusion matrix.
    self.total_cm = self.add_weight(
        'total_confusion_matrix',
        shape=(num_classes, num_classes),
        initializer=tf.compat.v1.zeros_initializer)

  def update_state(self, y_true, y_pred, sample_weight=None):
    """Accumulates the confusion matrix statistics.

    Args:
      y_true: The ground truth values.
      y_pred: The predicted values.
      sample_weight: Optional weighting of each example. Defaults to 1. Can be a
        `Tensor` whose rank is either 0, or the same rank as `y_true`, and must
        be broadcastable to `y_true`.

    Returns:
      IOU per class.
    """

    y_true = tf.cast(y_true, self._dtype)
    y_pred = tf.cast(y_pred, self._dtype)

    # Flatten the input if its rank > 1.
    if y_pred.shape.ndims > 1:
      y_pred = tf.reshape(y_pred, [-1])

    if y_true.shape.ndims > 1:
      y_true = tf.reshape(y_true, [-1])

    if sample_weight is not None:
      sample_weight = tf.cast(sample_weight, self._dtype)
      if sample_weight.shape.ndims > 1:
        sample_weight = tf.reshape(sample_weight, [-1])

    # Accumulate the prediction to current confusion matrix.
    current_cm = tf.math.confusion_matrix(
        y_true,
        y_pred,
        self.num_classes,
        weights=sample_weight,
        dtype=self._dtype)
    return self.total_cm.assign_add(current_cm)

  def result(self):
    """Compute the mean intersection-over-union via the confusion matrix."""
    sum_over_row = tf.cast(
        tf.reduce_sum(self.total_cm, axis=0), dtype=self._dtype)
    sum_over_col = tf.cast(
        tf.reduce_sum(self.total_cm, axis=1), dtype=self._dtype)
    true_positives = tf.cast(
        tf.linalg.tensor_diag_part(self.total_cm), dtype=self._dtype)

    # sum_over_row + sum_over_col =
    #     2 * true_positives + false_positives + false_negatives.
    denominator = sum_over_row + sum_over_col - true_positives

    return tf.math.divide_no_nan(true_positives, denominator)

  def reset_states(self):
    tf.keras.backend.set_value(
        self.total_cm, np.zeros((self.num_classes, self.num_classes)))

  def get_config(self):
    config = {'num_classes': self.num_classes}
    base_config = super(PerClassIoU, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))