video_input.py 14.9 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14
15

# Lint as: python3
Abdullah Rashwan's avatar
Abdullah Rashwan committed
16
17
"""Parser for video and label datasets."""

Yeqing Li's avatar
Yeqing Li committed
18
from typing import Dict, Optional, Tuple, Union
Abdullah Rashwan's avatar
Abdullah Rashwan committed
19
20
21
22
23
24
25

from absl import logging
import tensorflow as tf

from official.vision.beta.configs import video_classification as exp_cfg
from official.vision.beta.dataloaders import decoder
from official.vision.beta.dataloaders import parser
Dan Kondratyuk's avatar
Dan Kondratyuk committed
26
from official.vision.beta.ops import augment
Abdullah Rashwan's avatar
Abdullah Rashwan committed
27
28
29
30
31
32
from official.vision.beta.ops import preprocess_ops_3d

IMAGE_KEY = 'image/encoded'
LABEL_KEY = 'clip/label/index'


33
34
35
36
def process_image(image: tf.Tensor,
                  is_training: bool = True,
                  num_frames: int = 32,
                  stride: int = 1,
37
                  random_stride_range: int = 0,
38
39
40
41
42
43
44
45
46
                  num_test_clips: int = 1,
                  min_resize: int = 256,
                  crop_size: int = 224,
                  num_crops: int = 1,
                  zero_centering_image: bool = False,
                  min_aspect_ratio: float = 0.5,
                  max_aspect_ratio: float = 2,
                  min_area_ratio: float = 0.49,
                  max_area_ratio: float = 1.0,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
47
                  augmenter: Optional[augment.ImageAugment] = None,
48
                  seed: Optional[int] = None) -> tf.Tensor:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
49
50
51
52
53
54
55
56
57
  """Processes a serialized image tensor.

  Args:
    image: Input Tensor of shape [timesteps] and type tf.string of serialized
      frames.
    is_training: Whether or not in training mode. If True, random sample, crop
      and left right flip is used.
    num_frames: Number of frames per subclip.
    stride: Temporal stride to sample frames.
58
59
60
61
62
    random_stride_range: An int indicating the min and max bounds to uniformly
      sample different strides from the video. E.g., a value of 1 with stride=2
      will uniformly sample a stride in {1, 2, 3} for each video in a batch.
      Only used enabled training for the purposes of frame-rate augmentation.
      Defaults to 0, which disables random sampling.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
63
64
65
66
67
68
69
    num_test_clips: Number of test clips (1 by default). If more than 1, this
      will sample multiple linearly spaced clips within each video at test time.
      If 1, then a single clip in the middle of the video is sampled. The clips
      are aggreagated in the batch dimension.
    min_resize: Frames are resized so that min(height, width) is min_resize.
    crop_size: Final size of the frame after cropping the resized frames. Both
      height and width are the same.
Yin Cui's avatar
Yin Cui committed
70
    num_crops: Number of crops to perform on the resized frames.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
71
72
    zero_centering_image: If True, frames are normalized to values in [-1, 1].
      If False, values in [0, 1].
Yeqing Li's avatar
Yeqing Li committed
73
74
75
76
    min_aspect_ratio: The minimum aspect range for cropping.
    max_aspect_ratio: The maximum aspect range for cropping.
    min_area_ratio: The minimum area range for cropping.
    max_area_ratio: The maximum area range for cropping.
Dan Kondratyuk's avatar
Dan Kondratyuk committed
77
    augmenter: Image augmenter to distort each image.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
78
79
80
81
82
83
84
85
86
87
88
89
    seed: A deterministic seed to use when sampling.

  Returns:
    Processed frames. Tensor of shape
      [num_frames * num_test_clips, crop_size, crop_size, 3].
  """
  # Validate parameters.
  if is_training and num_test_clips != 1:
    logging.warning(
        '`num_test_clips` %d is ignored since `is_training` is `True`.',
        num_test_clips)

90
91
92
93
  if random_stride_range < 0:
    raise ValueError('Random stride range should be >= 0, got {}'.format(
        random_stride_range))

Abdullah Rashwan's avatar
Abdullah Rashwan committed
94
95
  # Temporal sampler.
  if is_training:
96
97
98
99
100
101
102
103
    if random_stride_range > 0:
      # Uniformly sample different frame-rates
      stride = tf.random.uniform(
          [],
          tf.maximum(stride - random_stride_range, 1),
          stride + random_stride_range,
          dtype=tf.int32)

Abdullah Rashwan's avatar
Abdullah Rashwan committed
104
105
106
107
108
109
110
111
112
113
114
115
    # Sample random clip.
    image = preprocess_ops_3d.sample_sequence(image, num_frames, True, stride,
                                              seed)
  elif num_test_clips > 1:
    # Sample linspace clips.
    image = preprocess_ops_3d.sample_linspace_sequence(image, num_test_clips,
                                                       num_frames, stride)
  else:
    # Sample middle clip.
    image = preprocess_ops_3d.sample_sequence(image, num_frames, False, stride)

  # Decode JPEG string to tf.uint8.
116
117
  if image.dtype == tf.string:
    image = preprocess_ops_3d.decode_jpeg(image, 3)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
118
119

  if is_training:
Yin Cui's avatar
Yin Cui committed
120
121
    # Standard image data augmentation: random resized crop and random flip.
    image = preprocess_ops_3d.random_crop_resize(
Yeqing Li's avatar
Yeqing Li committed
122
123
124
        image, crop_size, crop_size, num_frames, 3,
        (min_aspect_ratio, max_aspect_ratio),
        (min_area_ratio, max_area_ratio))
Abdullah Rashwan's avatar
Abdullah Rashwan committed
125
    image = preprocess_ops_3d.random_flip_left_right(image, seed)
Dan Kondratyuk's avatar
Dan Kondratyuk committed
126
127
128

    if augmenter is not None:
      image = augmenter.distort(image)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
129
  else:
Yin Cui's avatar
Yin Cui committed
130
131
    # Resize images (resize happens only if necessary to save compute).
    image = preprocess_ops_3d.resize_smallest(image, min_resize)
Yin Cui's avatar
Yin Cui committed
132
133
134
    # Crop of the frames.
    image = preprocess_ops_3d.crop_image(image, crop_size, crop_size, False,
                                         num_crops)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
135
136
137
138
139

  # Cast the frames in float32, normalizing according to zero_centering_image.
  return preprocess_ops_3d.normalize_image(image, zero_centering_image)


140
141
142
143
144
def postprocess_image(image: tf.Tensor,
                      is_training: bool = True,
                      num_frames: int = 32,
                      num_test_clips: int = 1,
                      num_test_crops: int = 1) -> tf.Tensor:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
145
146
147
148
149
150
151
152
153
154
155
156
157
  """Processes a batched Tensor of frames.

  The same parameters used in process should be used here.

  Args:
    image: Input Tensor of shape [batch, timesteps, height, width, 3].
    is_training: Whether or not in training mode. If True, random sample, crop
      and left right flip is used.
    num_frames: Number of frames per subclip.
    num_test_clips: Number of test clips (1 by default). If more than 1, this
      will sample multiple linearly spaced clips within each video at test time.
      If 1, then a single clip in the middle of the video is sampled. The clips
      are aggreagated in the batch dimension.
Yin Cui's avatar
Yin Cui committed
158
159
160
    num_test_crops: Number of test crops (1 by default). If more than 1, there
      are multiple crops for each clip at test time. If 1, there is a single
      central crop. The crops are aggreagated in the batch dimension.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
161
162
163

  Returns:
    Processed frames. Tensor of shape
Yin Cui's avatar
Yin Cui committed
164
      [batch * num_test_clips * num_test_crops, num_frames, height, width, 3].
Abdullah Rashwan's avatar
Abdullah Rashwan committed
165
  """
Yin Cui's avatar
Yin Cui committed
166
167
168
169
170
  num_views = num_test_clips * num_test_crops
  if num_views > 1 and not is_training:
    # In this case, multiple views are merged together in batch dimenstion which
    # will be batch * num_views.
    image = tf.reshape(image, [-1, num_frames] + image.shape[2:].as_list())
Abdullah Rashwan's avatar
Abdullah Rashwan committed
171
172
173
174

  return image


175
176
177
def process_label(label: tf.Tensor,
                  one_hot_label: bool = True,
                  num_classes: Optional[int] = None) -> tf.Tensor:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
178
179
180
181
182
183
184
185
186
187
188
189
  """Processes label Tensor."""
  # Validate parameters.
  if one_hot_label and not num_classes:
    raise ValueError(
        '`num_classes` should be given when requesting one hot label.')

  # Cast to tf.int32.
  label = tf.cast(label, dtype=tf.int32)

  if one_hot_label:
    # Replace label index by one hot representation.
    label = tf.one_hot(label, num_classes)
Yeqing Li's avatar
Yeqing Li committed
190
191
192
193
194
    if len(label.shape.as_list()) > 1:
      label = tf.reduce_sum(label, axis=0)
    if num_classes == 1:
      # The trick for single label.
      label = 1 - label
Abdullah Rashwan's avatar
Abdullah Rashwan committed
195
196
197
198
199
200
201
202
203
204

  return label


class Decoder(decoder.Decoder):
  """A tf.Example decoder for classification task."""

  def __init__(self, image_key: str = IMAGE_KEY, label_key: str = LABEL_KEY):
    self._context_description = {
        # One integer stored in context.
205
        label_key: tf.io.VarLenFeature(tf.int64),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
206
207
208
    }
    self._sequence_description = {
        # Each image is a string encoding JPEG.
209
        image_key: tf.io.FixedLenSequenceFeature((), tf.string),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
210
211
    }

Yeqing Li's avatar
Yeqing Li committed
212
213
214
215
216
217
218
219
220
221
222
223
  def add_feature(self, feature_name: str,
                  feature_type: Union[tf.io.VarLenFeature,
                                      tf.io.FixedLenFeature,
                                      tf.io.FixedLenSequenceFeature]):
    self._sequence_description[feature_name] = feature_type

  def add_context(self, feature_name: str,
                  feature_type: Union[tf.io.VarLenFeature,
                                      tf.io.FixedLenFeature,
                                      tf.io.FixedLenSequenceFeature]):
    self._context_description[feature_name] = feature_type

Abdullah Rashwan's avatar
Abdullah Rashwan committed
224
225
  def decode(self, serialized_example):
    """Parses a single tf.Example into image and label tensors."""
Yeqing Li's avatar
Yeqing Li committed
226
    result = {}
Abdullah Rashwan's avatar
Abdullah Rashwan committed
227
228
229
    context, sequences = tf.io.parse_single_sequence_example(
        serialized_example, self._context_description,
        self._sequence_description)
Yeqing Li's avatar
Yeqing Li committed
230
231
232
233
234
235
    result.update(context)
    result.update(sequences)
    for key, value in result.items():
      if isinstance(value, tf.SparseTensor):
        result[key] = tf.sparse.to_dense(value)
    return result
Abdullah Rashwan's avatar
Abdullah Rashwan committed
236
237


238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
class VideoTfdsDecoder(decoder.Decoder):
  """A tf.SequenceExample decoder for tfds video classification datasets."""

  def __init__(self, image_key: str = IMAGE_KEY, label_key: str = LABEL_KEY):
    self._image_key = image_key
    self._label_key = label_key

  def decode(self, features):
    """Decode the TFDS FeatureDict.

    Args:
      features: features from TFDS video dataset.
        See https://www.tensorflow.org/datasets/catalog/ucf101 for example.
    Returns:
      Dict of tensors.
    """
    sample_dict = {
        self._image_key: features['video'],
        self._label_key: features['label'],
    }
    return sample_dict


Abdullah Rashwan's avatar
Abdullah Rashwan committed
261
262
263
264
265
266
267
268
269
class Parser(parser.Parser):
  """Parses a video and label dataset."""

  def __init__(self,
               input_params: exp_cfg.DataConfig,
               image_key: str = IMAGE_KEY,
               label_key: str = LABEL_KEY):
    self._num_frames = input_params.feature_shape[0]
    self._stride = input_params.temporal_stride
270
    self._random_stride_range = input_params.random_stride_range
Abdullah Rashwan's avatar
Abdullah Rashwan committed
271
272
273
    self._num_test_clips = input_params.num_test_clips
    self._min_resize = input_params.min_image_size
    self._crop_size = input_params.feature_shape[1]
Yin Cui's avatar
Yin Cui committed
274
    self._num_crops = input_params.num_test_crops
Abdullah Rashwan's avatar
Abdullah Rashwan committed
275
276
277
278
    self._one_hot_label = input_params.one_hot
    self._num_classes = input_params.num_classes
    self._image_key = image_key
    self._label_key = label_key
279
    self._dtype = tf.dtypes.as_dtype(input_params.dtype)
Yeqing Li's avatar
Yeqing Li committed
280
    self._output_audio = input_params.output_audio
Yeqing Li's avatar
Yeqing Li committed
281
282
283
284
    self._min_aspect_ratio = input_params.aug_min_aspect_ratio
    self._max_aspect_ratio = input_params.aug_max_aspect_ratio
    self._min_area_ratio = input_params.aug_min_area_ratio
    self._max_area_ratio = input_params.aug_max_area_ratio
Yeqing Li's avatar
Yeqing Li committed
285
286
287
    if self._output_audio:
      self._audio_feature = input_params.audio_feature
      self._audio_shape = input_params.audio_feature_shape
Abdullah Rashwan's avatar
Abdullah Rashwan committed
288

Dan Kondratyuk's avatar
Dan Kondratyuk committed
289
290
291
292
293
294
295
296
297
298
299
300
301
    self._augmenter = None
    if input_params.aug_type is not None:
      aug_type = input_params.aug_type
      if aug_type == 'autoaug':
        logging.info('Using AutoAugment.')
        self._augmenter = augment.AutoAugment()
      elif aug_type == 'randaug':
        logging.info('Using RandAugment.')
        self._augmenter = augment.RandAugment()
      else:
        raise ValueError('Augmentation policy {} is not supported.'.format(
            aug_type))

Abdullah Rashwan's avatar
Abdullah Rashwan committed
302
303
304
305
306
307
  def _parse_train_data(
      self, decoded_tensors: Dict[str, tf.Tensor]
  ) -> Tuple[Dict[str, tf.Tensor], tf.Tensor]:
    """Parses data for training."""
    # Process image and label.
    image = decoded_tensors[self._image_key]
308
    image = process_image(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
309
310
311
312
        image=image,
        is_training=True,
        num_frames=self._num_frames,
        stride=self._stride,
313
        random_stride_range=self._random_stride_range,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
314
315
        num_test_clips=self._num_test_clips,
        min_resize=self._min_resize,
Yeqing Li's avatar
Yeqing Li committed
316
317
318
319
        crop_size=self._crop_size,
        min_aspect_ratio=self._min_aspect_ratio,
        max_aspect_ratio=self._max_aspect_ratio,
        min_area_ratio=self._min_area_ratio,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
320
321
        max_area_ratio=self._max_area_ratio,
        augmenter=self._augmenter)
322
    image = tf.cast(image, dtype=self._dtype)
Dan Kondratyuk's avatar
Dan Kondratyuk committed
323

Yeqing Li's avatar
Yeqing Li committed
324
    features = {'image': image}
Yeqing Li's avatar
Yeqing Li committed
325
326

    label = decoded_tensors[self._label_key]
327
    label = process_label(label, self._one_hot_label, self._num_classes)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
328

Yeqing Li's avatar
Yeqing Li committed
329
330
331
332
333
334
335
336
337
338
    if self._output_audio:
      audio = decoded_tensors[self._audio_feature]
      audio = tf.cast(audio, dtype=self._dtype)
      # TODO(yeqing): synchronize audio/video sampling. Especially randomness.
      audio = preprocess_ops_3d.sample_sequence(
          audio, self._audio_shape[0], random=False, stride=1)
      audio = tf.ensure_shape(audio, self._audio_shape)
      features['audio'] = audio

    return features, label
Abdullah Rashwan's avatar
Abdullah Rashwan committed
339
340
341
342
343
344

  def _parse_eval_data(
      self, decoded_tensors: Dict[str, tf.Tensor]
  ) -> Tuple[Dict[str, tf.Tensor], tf.Tensor]:
    """Parses data for evaluation."""
    image = decoded_tensors[self._image_key]
345
    image = process_image(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
346
347
348
349
350
351
        image=image,
        is_training=False,
        num_frames=self._num_frames,
        stride=self._stride,
        num_test_clips=self._num_test_clips,
        min_resize=self._min_resize,
Yin Cui's avatar
Yin Cui committed
352
353
        crop_size=self._crop_size,
        num_crops=self._num_crops)
354
    image = tf.cast(image, dtype=self._dtype)
Yeqing Li's avatar
Yeqing Li committed
355
    features = {'image': image}
Yeqing Li's avatar
Yeqing Li committed
356
357

    label = decoded_tensors[self._label_key]
358
    label = process_label(label, self._one_hot_label, self._num_classes)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
359

Yeqing Li's avatar
Yeqing Li committed
360
361
362
363
364
    if self._output_audio:
      audio = decoded_tensors[self._audio_feature]
      audio = tf.cast(audio, dtype=self._dtype)
      audio = preprocess_ops_3d.sample_sequence(
          audio, 20, random=False, stride=1)
365
      audio = tf.ensure_shape(audio, self._audio_shape)
Yeqing Li's avatar
Yeqing Li committed
366
367
368
      features['audio'] = audio

    return features, label
Abdullah Rashwan's avatar
Abdullah Rashwan committed
369
370
371
372
373
374
375
376
377
378


class PostBatchProcessor(object):
  """Processes a video and label dataset which is batched."""

  def __init__(self, input_params: exp_cfg.DataConfig):
    self._is_training = input_params.is_training

    self._num_frames = input_params.feature_shape[0]
    self._num_test_clips = input_params.num_test_clips
Yin Cui's avatar
Yin Cui committed
379
    self._num_test_crops = input_params.num_test_crops
Abdullah Rashwan's avatar
Abdullah Rashwan committed
380

Yeqing Li's avatar
Yeqing Li committed
381
382
  def __call__(self, features: Dict[str, tf.Tensor],
               label: tf.Tensor) -> Tuple[Dict[str, tf.Tensor], tf.Tensor]:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
383
    """Parses a single tf.Example into image and label tensors."""
384
    for key in ['image']:
Yeqing Li's avatar
Yeqing Li committed
385
      if key in features:
386
        features[key] = postprocess_image(
Yeqing Li's avatar
Yeqing Li committed
387
388
389
            image=features[key],
            is_training=self._is_training,
            num_frames=self._num_frames,
Yin Cui's avatar
Yin Cui committed
390
391
            num_test_clips=self._num_test_clips,
            num_test_crops=self._num_test_crops)
Yeqing Li's avatar
Yeqing Li committed
392
393

    return features, label