retinanet_input.py 13 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

Abdullah Rashwan's avatar
Abdullah Rashwan committed
15
16
17
18
19
20
21
"""Data parser and processing for RetinaNet.

Parse image and ground truths in a dataset to training targets and package them
into (image, labels) tuple for RetinaNet.
"""

# Import libraries
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
22
from absl import logging
Abdullah Rashwan's avatar
Abdullah Rashwan committed
23
24
25
26
27
import tensorflow as tf

from official.vision.beta.dataloaders import parser
from official.vision.beta.dataloaders import utils
from official.vision.beta.ops import anchor
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
28
from official.vision.beta.ops import augment
Abdullah Rashwan's avatar
Abdullah Rashwan committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from official.vision.beta.ops import box_ops
from official.vision.beta.ops import preprocess_ops


class Parser(parser.Parser):
  """Parser to parse an image and its annotations into a dictionary of tensors."""

  def __init__(self,
               output_size,
               min_level,
               max_level,
               num_scales,
               aspect_ratios,
               anchor_size,
               match_threshold=0.5,
               unmatched_threshold=0.5,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
45
               aug_type=None,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
               aug_rand_hflip=False,
               aug_scale_min=1.0,
               aug_scale_max=1.0,
               use_autoaugment=False,
               autoaugment_policy_name='v0',
               skip_crowd_during_training=True,
               max_num_instances=100,
               dtype='bfloat16',
               mode=None):
    """Initializes parameters for parsing annotations in the dataset.

    Args:
      output_size: `Tensor` or `list` for [height, width] of output image. The
        output_size should be divided by the largest feature stride 2^max_level.
      min_level: `int` number of minimum level of the output feature pyramid.
      max_level: `int` number of maximum level of the output feature pyramid.
      num_scales: `int` number representing intermediate scales added on each
        level. For instances, num_scales=2 adds one additional intermediate
        anchor scales [2^0, 2^0.5] on each level.
      aspect_ratios: `list` of float numbers representing the aspect raito
        anchors added on each level. The number indicates the ratio of width to
        height. For instances, aspect_ratios=[1.0, 2.0, 0.5] adds three anchors
        on each scale level.
      anchor_size: `float` number representing the scale of size of the base
        anchor to the feature stride 2^level.
      match_threshold: `float` number between 0 and 1 representing the
        lower-bound threshold to assign positive labels for anchors. An anchor
        with a score over the threshold is labeled positive.
      unmatched_threshold: `float` number between 0 and 1 representing the
        upper-bound threshold to assign negative labels for anchors. An anchor
        with a score below the threshold is labeled negative.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
77
78
      aug_type: An optional Augmentation object to choose from AutoAugment and
        RandAugment. The latter is not supported, and will raise ValueError.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
      aug_rand_hflip: `bool`, if True, augment training with random horizontal
        flip.
      aug_scale_min: `float`, the minimum scale applied to `output_size` for
        data augmentation during training.
      aug_scale_max: `float`, the maximum scale applied to `output_size` for
        data augmentation during training.
      use_autoaugment: `bool`, if True, use the AutoAugment augmentation policy
        during training.
      autoaugment_policy_name: `string` that specifies the name of the
        AutoAugment policy that will be used during training.
      skip_crowd_during_training: `bool`, if True, skip annotations labeled with
        `is_crowd` equals to 1.
      max_num_instances: `int` number of maximum number of instances in an
        image. The groundtruth data will be padded to `max_num_instances`.
      dtype: `str`, data type. One of {`bfloat16`, `float32`, `float16`}.
      mode: a ModeKeys. Specifies if this is training, evaluation, prediction or
        prediction with groundtruths in the outputs.
    """
    self._mode = mode
    self._max_num_instances = max_num_instances
    self._skip_crowd_during_training = skip_crowd_during_training

    # Anchor.
    self._output_size = output_size
    self._min_level = min_level
    self._max_level = max_level
    self._num_scales = num_scales
    self._aspect_ratios = aspect_ratios
    self._anchor_size = anchor_size
    self._match_threshold = match_threshold
    self._unmatched_threshold = unmatched_threshold

    # Data augmentation.
    self._aug_rand_hflip = aug_rand_hflip
    self._aug_scale_min = aug_scale_min
    self._aug_scale_max = aug_scale_max

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    # Data augmentation with AutoAugment or RandAugment.
    self._augmenter = None
    if aug_type is not None:
      if aug_type.type == 'autoaug':
        logging.info('Using AutoAugment.')
        self._augmenter = augment.AutoAugment(
            augmentation_name=aug_type.autoaug.augmentation_name,
            cutout_const=aug_type.autoaug.cutout_const,
            translate_const=aug_type.autoaug.translate_const)
      else:
        # TODO(b/205346436) Support RandAugment.
        raise ValueError(f'Augmentation policy {aug_type.type} not supported.')

    # Deprecated. Data Augmentation with AutoAugment.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
130
131
132
    self._use_autoaugment = use_autoaugment
    self._autoaugment_policy_name = autoaugment_policy_name

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
133
134
    # Data type.
    self._dtype = dtype
Abdullah Rashwan's avatar
Abdullah Rashwan committed
135
136
137
138
139

  def _parse_train_data(self, data):
    """Parses data for training and evaluation."""
    classes = data['groundtruth_classes']
    boxes = data['groundtruth_boxes']
Xianzhi Du's avatar
Xianzhi Du committed
140
141
142
143
    # If not empty, `attributes` is a dict of (name, ground_truth) pairs.
    # `ground_gruth` of attributes is assumed in shape [N, attribute_size].
    # TODO(xianzhi): support parsing attributes weights.
    attributes = data.get('groundtruth_attributes', {})
Abdullah Rashwan's avatar
Abdullah Rashwan committed
144
    is_crowds = data['groundtruth_is_crowd']
Xianzhi Du's avatar
Xianzhi Du committed
145

Abdullah Rashwan's avatar
Abdullah Rashwan committed
146
147
148
149
150
151
152
153
154
155
    # Skips annotations with `is_crowd` = True.
    if self._skip_crowd_during_training:
      num_groundtrtuhs = tf.shape(input=classes)[0]
      with tf.control_dependencies([num_groundtrtuhs, is_crowds]):
        indices = tf.cond(
            pred=tf.greater(tf.size(input=is_crowds), 0),
            true_fn=lambda: tf.where(tf.logical_not(is_crowds))[:, 0],
            false_fn=lambda: tf.cast(tf.range(num_groundtrtuhs), tf.int64))
      classes = tf.gather(classes, indices)
      boxes = tf.gather(boxes, indices)
Xianzhi Du's avatar
Xianzhi Du committed
156
157
      for k, v in attributes.items():
        attributes[k] = tf.gather(v, indices)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
158

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
159
    # Gets original image.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
160
161
    image = data['image']

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
162
163
164
165
    # Apply autoaug or randaug.
    if self._augmenter is not None:
      image, boxes = self._augmenter.distort_with_boxes(image, boxes)

Abdullah Rashwan's avatar
Abdullah Rashwan committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
    image_shape = tf.shape(input=image)[0:2]

    # Normalizes image with mean and std pixel values.
    image = preprocess_ops.normalize_image(image)

    # Flips image randomly during training.
    if self._aug_rand_hflip:
      image, boxes, _ = preprocess_ops.random_horizontal_flip(image, boxes)

    # Converts boxes from normalized coordinates to pixel coordinates.
    boxes = box_ops.denormalize_boxes(boxes, image_shape)

    # Resizes and crops image.
    image, image_info = preprocess_ops.resize_and_crop_image(
        image,
        self._output_size,
        padded_size=preprocess_ops.compute_padded_size(self._output_size,
                                                       2**self._max_level),
        aug_scale_min=self._aug_scale_min,
        aug_scale_max=self._aug_scale_max)
    image_height, image_width, _ = image.get_shape().as_list()

    # Resizes and crops boxes.
    image_scale = image_info[2, :]
    offset = image_info[3, :]
    boxes = preprocess_ops.resize_and_crop_boxes(boxes, image_scale,
                                                 image_info[1, :], offset)
    # Filters out ground truth boxes that are all zeros.
    indices = box_ops.get_non_empty_box_indices(boxes)
    boxes = tf.gather(boxes, indices)
    classes = tf.gather(classes, indices)
Xianzhi Du's avatar
Xianzhi Du committed
197
198
    for k, v in attributes.items():
      attributes[k] = tf.gather(v, indices)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
199
200
201
202
203
204
205
206
207
208
209

    # Assigns anchors.
    input_anchor = anchor.build_anchor_generator(
        min_level=self._min_level,
        max_level=self._max_level,
        num_scales=self._num_scales,
        aspect_ratios=self._aspect_ratios,
        anchor_size=self._anchor_size)
    anchor_boxes = input_anchor(image_size=(image_height, image_width))
    anchor_labeler = anchor.AnchorLabeler(self._match_threshold,
                                          self._unmatched_threshold)
Xianzhi Du's avatar
Xianzhi Du committed
210
    (cls_targets, box_targets, att_targets, cls_weights,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
211
     box_weights) = anchor_labeler.label_anchors(
Xianzhi Du's avatar
Xianzhi Du committed
212
         anchor_boxes, boxes, tf.expand_dims(classes, axis=1), attributes)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
213

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
214
215
    # Casts input image to desired data type.
    image = tf.cast(image, dtype=self._dtype)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
216
217
218
219
220
221
222
223
224
225

    # Packs labels for model_fn outputs.
    labels = {
        'cls_targets': cls_targets,
        'box_targets': box_targets,
        'anchor_boxes': anchor_boxes,
        'cls_weights': cls_weights,
        'box_weights': box_weights,
        'image_info': image_info,
    }
Xianzhi Du's avatar
Xianzhi Du committed
226
227
    if att_targets:
      labels['attribute_targets'] = att_targets
Abdullah Rashwan's avatar
Abdullah Rashwan committed
228
229
230
231
232
233
234
    return image, labels

  def _parse_eval_data(self, data):
    """Parses data for training and evaluation."""
    groundtruths = {}
    classes = data['groundtruth_classes']
    boxes = data['groundtruth_boxes']
Xianzhi Du's avatar
Xianzhi Du committed
235
236
237
238
    # If not empty, `attributes` is a dict of (name, ground_truth) pairs.
    # `ground_gruth` of attributes is assumed in shape [N, attribute_size].
    # TODO(xianzhi): support parsing attributes weights.
    attributes = data.get('groundtruth_attributes', {})
Abdullah Rashwan's avatar
Abdullah Rashwan committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268

    # Gets original image and its size.
    image = data['image']
    image_shape = tf.shape(input=image)[0:2]

    # Normalizes image with mean and std pixel values.
    image = preprocess_ops.normalize_image(image)

    # Converts boxes from normalized coordinates to pixel coordinates.
    boxes = box_ops.denormalize_boxes(boxes, image_shape)

    # Resizes and crops image.
    image, image_info = preprocess_ops.resize_and_crop_image(
        image,
        self._output_size,
        padded_size=preprocess_ops.compute_padded_size(self._output_size,
                                                       2**self._max_level),
        aug_scale_min=1.0,
        aug_scale_max=1.0)
    image_height, image_width, _ = image.get_shape().as_list()

    # Resizes and crops boxes.
    image_scale = image_info[2, :]
    offset = image_info[3, :]
    boxes = preprocess_ops.resize_and_crop_boxes(boxes, image_scale,
                                                 image_info[1, :], offset)
    # Filters out ground truth boxes that are all zeros.
    indices = box_ops.get_non_empty_box_indices(boxes)
    boxes = tf.gather(boxes, indices)
    classes = tf.gather(classes, indices)
Xianzhi Du's avatar
Xianzhi Du committed
269
270
    for k, v in attributes.items():
      attributes[k] = tf.gather(v, indices)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
271
272
273
274
275
276
277
278
279
280
281

    # Assigns anchors.
    input_anchor = anchor.build_anchor_generator(
        min_level=self._min_level,
        max_level=self._max_level,
        num_scales=self._num_scales,
        aspect_ratios=self._aspect_ratios,
        anchor_size=self._anchor_size)
    anchor_boxes = input_anchor(image_size=(image_height, image_width))
    anchor_labeler = anchor.AnchorLabeler(self._match_threshold,
                                          self._unmatched_threshold)
Xianzhi Du's avatar
Xianzhi Du committed
282
    (cls_targets, box_targets, att_targets, cls_weights,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
283
     box_weights) = anchor_labeler.label_anchors(
Xianzhi Du's avatar
Xianzhi Du committed
284
         anchor_boxes, boxes, tf.expand_dims(classes, axis=1), attributes)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
285

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
286
287
    # Casts input image to desired data type.
    image = tf.cast(image, dtype=self._dtype)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
288
289
290
291
292
293
294
295
296
297
298
299
300
301

    # Sets up groundtruth data for evaluation.
    groundtruths = {
        'source_id': data['source_id'],
        'height': data['height'],
        'width': data['width'],
        'num_detections': tf.shape(data['groundtruth_classes']),
        'image_info': image_info,
        'boxes': box_ops.denormalize_boxes(
            data['groundtruth_boxes'], image_shape),
        'classes': data['groundtruth_classes'],
        'areas': data['groundtruth_area'],
        'is_crowds': tf.cast(data['groundtruth_is_crowd'], tf.int32),
    }
Xianzhi Du's avatar
Xianzhi Du committed
302
303
    if 'groundtruth_attributes' in data:
      groundtruths['attributes'] = data['groundtruth_attributes']
Abdullah Rashwan's avatar
Abdullah Rashwan committed
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
    groundtruths['source_id'] = utils.process_source_id(
        groundtruths['source_id'])
    groundtruths = utils.pad_groundtruths_to_fixed_size(
        groundtruths, self._max_num_instances)

    # Packs labels for model_fn outputs.
    labels = {
        'cls_targets': cls_targets,
        'box_targets': box_targets,
        'anchor_boxes': anchor_boxes,
        'cls_weights': cls_weights,
        'box_weights': box_weights,
        'image_info': image_info,
        'groundtruths': groundtruths,
    }
Xianzhi Du's avatar
Xianzhi Du committed
319
320
    if att_targets:
      labels['attribute_targets'] = att_targets
Abdullah Rashwan's avatar
Abdullah Rashwan committed
321
    return image, labels