train.py 6.46 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Train and evaluate the Ranking model."""

from typing import Dict

from absl import app
from absl import flags
from absl import logging

import tensorflow as tf

Hongkun Yu's avatar
Hongkun Yu committed
25
from official.common import distribute_utils
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
from official.core import base_trainer
from official.core import train_lib
from official.core import train_utils
from official.recommendation.ranking import common
from official.recommendation.ranking.task import RankingTask
from official.utils.misc import keras_utils

FLAGS = flags.FLAGS


class RankingTrainer(base_trainer.Trainer):
  """A trainer for Ranking Model.

  The RankingModel has two optimizers for embedding and non embedding weights.
  Overriding `train_loop_end` method to log learning rates for each optimizer.
  """

  def train_loop_end(self) -> Dict[str, float]:
    """See base class."""
    self.join()
    logs = {}
    for metric in self.train_metrics + [self.train_loss]:
      logs[metric.name] = metric.result()
      metric.reset_states()

    for i, optimizer in enumerate(self.optimizer.optimizers):
      lr_key = f'{type(optimizer).__name__}_{i}_learning_rate'
      if callable(optimizer.learning_rate):
        logs[lr_key] = optimizer.learning_rate(self.global_step)
      else:
        logs[lr_key] = optimizer.learning_rate
    return logs


def main(_) -> None:
  """Train and evaluate the Ranking model."""
  params = train_utils.parse_configuration(FLAGS)
  mode = FLAGS.mode
  model_dir = FLAGS.model_dir
  if 'train' in FLAGS.mode:
    # Pure eval modes do not output yaml files. Otherwise continuous eval job
    # may race against the train job for writing the same file.
    train_utils.serialize_config(params, model_dir)

  if FLAGS.seed is not None:
    logging.info('Setting tf seed.')
    tf.random.set_seed(FLAGS.seed)

  task = RankingTask(
      params=params.task,
      optimizer_config=params.trainer.optimizer_config,
      logging_dir=model_dir,
      steps_per_execution=params.trainer.steps_per_loop,
      name='RankingTask')

  enable_tensorboard = params.trainer.callbacks.enable_tensorboard

Hongkun Yu's avatar
Hongkun Yu committed
83
  strategy = distribute_utils.get_distribution_strategy(
84
85
86
87
88
89
90
91
      distribution_strategy=params.runtime.distribution_strategy,
      all_reduce_alg=params.runtime.all_reduce_alg,
      num_gpus=params.runtime.num_gpus,
      tpu_address=params.runtime.tpu)

  with strategy.scope():
    model = task.build_model()

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
  def get_dataset_fn(params):
    return lambda input_context: task.build_inputs(params, input_context)

  train_dataset = None
  if 'train' in mode:
    train_dataset = strategy.distribute_datasets_from_function(
        get_dataset_fn(params.task.train_data),
        options=tf.distribute.InputOptions(experimental_fetch_to_device=False))

  validation_dataset = None
  if 'eval' in mode:
    validation_dataset = strategy.distribute_datasets_from_function(
        get_dataset_fn(params.task.validation_data),
        options=tf.distribute.InputOptions(experimental_fetch_to_device=False))

107
108
109
110
111
112
113
114
115
116
117
  if params.trainer.use_orbit:
    with strategy.scope():
      checkpoint_exporter = train_utils.maybe_create_best_ckpt_exporter(
          params, model_dir)
      trainer = RankingTrainer(
          config=params,
          task=task,
          model=model,
          optimizer=model.optimizer,
          train='train' in mode,
          evaluate='eval' in mode,
118
119
          train_dataset=train_dataset,
          validation_dataset=validation_dataset,
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
          checkpoint_exporter=checkpoint_exporter)

    train_lib.run_experiment(
        distribution_strategy=strategy,
        task=task,
        mode=mode,
        params=params,
        model_dir=model_dir,
        trainer=trainer)

  else:  # Compile/fit
    checkpoint = tf.train.Checkpoint(model=model, optimizer=model.optimizer)

    latest_checkpoint = tf.train.latest_checkpoint(model_dir)
    if latest_checkpoint:
      checkpoint.restore(latest_checkpoint)
      logging.info('Loaded checkpoint %s', latest_checkpoint)

    checkpoint_manager = tf.train.CheckpointManager(
        checkpoint,
        directory=model_dir,
        max_to_keep=params.trainer.max_to_keep,
        step_counter=model.optimizer.iterations,
        checkpoint_interval=params.trainer.checkpoint_interval)
    checkpoint_callback = keras_utils.SimpleCheckpoint(checkpoint_manager)

    time_callback = keras_utils.TimeHistory(
        params.task.train_data.global_batch_size,
        params.trainer.time_history.log_steps,
        logdir=model_dir if enable_tensorboard else None)
    callbacks = [checkpoint_callback, time_callback]

    if enable_tensorboard:
      tensorboard_callback = tf.keras.callbacks.TensorBoard(
          log_dir=model_dir,
          update_freq=min(1000, params.trainer.validation_interval),
          profile_batch=FLAGS.profile_steps)
      callbacks.append(tensorboard_callback)

    num_epochs = (params.trainer.train_steps //
                  params.trainer.validation_interval)
    current_step = model.optimizer.iterations.numpy()
    initial_epoch = current_step // params.trainer.validation_interval

    eval_steps = params.trainer.validation_steps if 'eval' in mode else None

    if mode in ['train', 'train_and_eval']:
      logging.info('Training started')
      history = model.fit(
          train_dataset,
          initial_epoch=initial_epoch,
          epochs=num_epochs,
          steps_per_epoch=params.trainer.validation_interval,
173
          validation_data=validation_dataset,
174
175
176
177
178
179
180
          validation_steps=eval_steps,
          callbacks=callbacks,
      )
      model.summary()
      logging.info('Train history: %s', history.history)
    elif mode == 'eval':
      logging.info('Evaluation started')
181
      validation_output = model.evaluate(validation_dataset, steps=eval_steps)
182
183
184
185
186
187
188
189
190
      logging.info('Evaluation output: %s', validation_output)
    else:
      raise NotImplementedError('The mode is not implemented: %s' % mode)


if __name__ == '__main__':
  logging.set_verbosity(logging.INFO)
  common.define_flags()
  app.run(main)